matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenKritische Punkte
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Reelle Analysis mehrerer Veränderlichen" - Kritische Punkte
Kritische Punkte < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kritische Punkte: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 15:08 Sa 28.09.2013
Autor: ellegance88

Aufgabe
Bestimmen sie die kritische Punkte von [mm] f(x,y)=(x^2+2y^2)*e^-^{(x^2+y^2)} [/mm]

Hallo ich habe ein Paar Probleme bei dieser Aufgabe undzwar habe ich als erste Ableitung nach x: [mm] e^{-x^2-y^2}(-4xy^2-2x^3+2x) [/mm] raus. und die Ableitung nach y: [mm] e^{-x^2-y^2}(-4y^3-2x^2y+4y) [/mm]

ich habe dann die erste Gleichung also [mm] e^{-x^2-y^2}(-4xy^2-2x^3+2x) [/mm] =0 gesetzt. eine e-funktion kann nicht Null werden deswegen betrachtet man nur [mm] (-4xy^2-2x^3+2x)=0. [/mm]
dann habe ich [mm] 2x(-2y^2-x^2+1)=0. [/mm] Anschließend. 1.Fall x=0 und 2.Fall y= [mm] \bruch{1}{2}x+\wurzel{\bruch{1}{2}} [/mm]

ist es bis hierhin richtig?

LG

        
Bezug
Kritische Punkte: Antwort
Status: (Antwort) fertig Status 
Datum: 15:32 Sa 28.09.2013
Autor: reverend

Moin!

Fast richtig. ;-)

> Bestimmen sie die kritische Punkte von
> [mm]f(x,y)=(x^2+2y^2)*e^-^{(x^2+y^2)}[/mm]
> Hallo ich habe ein Paar Probleme bei dieser Aufgabe
> undzwar habe ich als erste Ableitung nach x:
> [mm]e^{-x^2-y^2}(-4xy^2-2x^3+2x)[/mm] raus. und die Ableitung nach
> y: [mm]e^{-x^2-y^2}(-4y^3-2x^2y+4y)[/mm]

Igitt, da musste ich auf Papier nachrechnen. Stimmt aber beides.

> ich habe dann die erste Gleichung also
> [mm]e^{-x^2-y^2}(-4xy^2-2x^3+2x)[/mm] =0 gesetzt. eine e-funktion
> kann nicht Null werden deswegen betrachtet man nur
> [mm](-4xy^2-2x^3+2x)=0.[/mm]

Jawoll.

> dann habe ich [mm]2x(-2y^2-x^2+1)=0.[/mm] Anschließend. 1.Fall x=0

[ok]

> und 2.Fall y= [mm]\bruch{1}{2}x+\wurzel{\bruch{1}{2}}[/mm]

[notok]

> ist es bis hierhin richtig?

Mensch, wie ging das noch mit dem Wurzelziehen? Jedenfalls nicht gliedweise aus einer Summe, auch dann nicht, wenn die Summe eine Differenz ist. :-)

Grüße
reverend

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]