matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGeraden und EbenenKreuzprodukt
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Geraden und Ebenen" - Kreuzprodukt
Kreuzprodukt < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kreuzprodukt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:24 So 27.11.2011
Autor: Bilalo92

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hi
Zu meinem Problem direkt:
Um von der Parameterform zur Koordinatengleichung zu kommen kann man ja entweder die 2 Richtungsvektoren mit a, b und c multiplizieren und danach gleichsetzen oder das Kreuzprodukt nehmen.
Mein Problem ist hierbei ,dass  ich verschiedene Ergebnisse bekomme bei beiden Verfahren.
Beispiel:
Richtungsvektoren sind : 1 , -1 , 0 und der andere 1 ,-3 und 4.
Beim Gleichsetzen bekomme ich für a = 4 b = 4 und c =2
Beim Kreuzprodukt bekomme ich für a = -4 b= -4 und c = -2

Die Zahlen sind immer gleich aber die Vorzeichen sind anders und das passiert mir bei allen Aufgaben was mache ich falsch?

        
Bezug
Kreuzprodukt: Antwort
Status: (Antwort) fertig Status 
Datum: 15:30 So 27.11.2011
Autor: M.Rex

Hallo


> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> Hi
>  Zu meinem Problem direkt:
>  Um von der Parameterform zur Koordinatengleichung zu
> kommen kann man ja entweder die 2 Richtungsvektoren mit a,
> b und c multiplizieren und danach gleichsetzen oder das
> Kreuzprodukt nehmen.
>  Mein Problem ist hierbei ,dass  ich verschiedene
> Ergebnisse bekomme bei beiden Verfahren.
>  Beispiel:
>  Richtungsvektoren sind : 1 , -1 , 0 und der andere 1 ,-3
> und 4.
>  Beim Gleichsetzen bekomme ich für a = 4 b = 4 und c =2
>  Beim Kreuzprodukt bekomme ich für a = -4 b= -4 und c =
> -2
>  
> Die Zahlen sind immer gleich aber die Vorzeichen sind
> anders und das passiert mir bei allen Aufgaben was mache
> ich falsch?

Nichts, es gibt ja nicht nur einen Normalenvektor. Bei diesem ist ja nur die Orthogonalität zur Ebene wichtig.

Und wenn [mm] \vektor{4\\4\\2} [/mm] diese Eigenschaft erfüllt, tut es auch [mm] \vektor{-4\\-4\\-2}, [/mm] es würde aber auch [mm] \vektor{2\\2\\1} [/mm] oder [mm] \vektor{4e^{\pi}\\4e^{\pi}\\2e^{\pi}} [/mm] funktionieren.

Marius


Bezug
                
Bezug
Kreuzprodukt: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:17 So 27.11.2011
Autor: Bilalo92

Also sind die negativen Zahlen auch vielfaches.Somit wären beide Ergebnisse zur Lösung der Aufgabe nutzbar.

Dann bedanke ich mich schonmal für die Hilfe :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]