matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAlgebraKreisteilungspolynom
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Algebra" - Kreisteilungspolynom
Kreisteilungspolynom < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kreisteilungspolynom: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 17:46 Mo 28.05.2007
Autor: PaulP

Aufgabe
Für n [mm] \in \IN [/mm] sei [mm] \Phi_n(x) [/mm] das n-te Kreisteilungspolynom

Zu zeigen: für ungerade n [mm] \ge [/mm] 3 gilt:
[mm] \Phi_{2n}(x) [/mm] = [mm] \Phi_n(-x) [/mm]

Also ich weiß, dass bei [mm] \Phi_{2n} [/mm] nur als zusätzlicher Faktor [mm] \Phi_2 [/mm] dazukommt, die anderen Primfaktoren bleiben ja dieselben.

Trotzdem komme ich nicht weiter, ich habe es auch per Induktion versucht, bin aber gescheitert.

Wie gehe ich dabei vor?

Danke!

Paul

        
Bezug
Kreisteilungspolynom: Antwort
Status: (Antwort) fertig Status 
Datum: 22:00 Mo 28.05.2007
Autor: felixf

Hallo Paul!

> Für n [mm]\in \IN[/mm] sei [mm]\Phi_n(x)[/mm] das n-te Kreisteilungspolynom
>  
> Zu zeigen: für ungerade n [mm]\ge[/mm] 3 gilt:
>  [mm]\Phi_{2n}(x)[/mm] = [mm]\Phi_n(-x)[/mm]
>  Also ich weiß, dass bei [mm]\Phi_{2n}[/mm] nur als zusätzlicher
> Faktor [mm]\Phi_2[/mm] dazukommt, die anderen Primfaktoren bleiben
> ja dieselben.
>  
> Trotzdem komme ich nicht weiter, ich habe es auch per
> Induktion versucht, bin aber gescheitert.
>  
> Wie gehe ich dabei vor?

Das geht recht schnell direkt: und zwar ist [mm] $\Phi_n(x)$ [/mm] ja das Minimalpolynom einer $n$-ten primitiven Einheitswurzel ueber [mm] $\IQ$. [/mm]

So. Wenn [mm] $\zeta \in \IC$ [/mm] jetzt eine primitive $n$-te Einheitswurzel ist und $n$ ungerade ist, dann zeige einfach, dass [mm] $-\zeta [/mm] = (-1) [mm] \zeta$ [/mm] eine primitive $2 n$-te Einheitswurzel ist. Daraus folgt dann sofort die Behauptung...

LG Felix


Bezug
                
Bezug
Kreisteilungspolynom: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:18 Fr 20.06.2008
Autor: Stundent_Jan

Guten Tag, ich hab zu dieser Aufgabe mal ne Frage:

Wie genau folgt daraus die Behauptung?

Bezug
                        
Bezug
Kreisteilungspolynom: Antwort
Status: (Antwort) fertig Status 
Datum: 00:08 Sa 21.06.2008
Autor: felixf

Hallo [willkommenmr]

> Guten Tag, ich hab zu dieser Aufgabe mal ne Frage:
>  
> Wie genau folgt daraus die Behauptung?

Etwas kombinieren musst du noch selber: wenn [mm] $\zeta$ [/mm] eine Nullstelle von [mm] $\Phi_n(x)$ [/mm] ist, wovon ist dann [mm] $-\zeta$ [/mm] eine Nullstelle?

LG Felix



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]