Kreisteilungskörper noethersch < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 10:42 Fr 08.10.2010 | Autor: | Arcesius |
Aufgabe | Let [mm]n \ge 1[/mm] be an integer and [mm]\zeta_{n}[/mm] the complex number [mm]e^{2\pi i/n}[/mm].
1) Show that [mm]\mathbb{Z}\left[\zeta_{n}\right][/mm] is a subring of the field of complex numbers.
2) Prove that [mm]\mathbb{Z}\left[\zeta_{n}\right][/mm] is noetherian. |
Hallo Leute
Ich brauche Hilfe bei der obigen Aufgabe. Ich glaube Teil 1) ist relativ simpel, vielleicht hab ich jedoch etwas übersehen. Bei Teil 2) hab ich die Idee, kann sie aber nicht umsetzen:
1) Ein Element [mm]a \in \mathbb{Z}\left[\zeta_{n}\right][/mm] hat die Form [mm]a = a_{0} + a_{1}\zeta_{n} + \cdots + a_{n-1}\zeta_{n}^{n-1}[/mm] und es gilt [mm]\zeta_{n}^{n} = 1[/mm].
Die ersten 2 Axiome (Unterring nicht leer und unter addition abgeschlossen) sind offensichtlich, es gilt also zu zeigen, dass es unter Multiplikation abgeschlossen ist.
Nehme [mm]a[/mm] und [mm]a'[/mm] beide in [mm]\mathbb{Z}\left[\zeta_{n}\right][/mm], [mm]a[/mm] mit Koeffizienten [mm]a_{0},...,a_{n-1}[/mm] und [mm]a'[/mm] mit Koeffizienten [mm]a_{0}',...,a_{n-1}'[/mm].
Dann ist [mm]a\cdot a' = (a_{1}+\cdots+a_{n-1}\zeta_{n}^{n-1})(a_{0}'+\cdots+a_{n-1}'\zeta_{n}^{n-1}) = a_{0}a_{0}' + (a_{0}a_{1}'+a_{1}a_{0}')\zeta_{n}+\cdots+(\sum\limits_{i,j}a_{i}a_{j}')\zeta_{n}^{n-1} + \cdots + (\sum\limits_{i,j}a_{i}a_{j}')\zeta_{n}^{(n-1)+(n-1)}[/mm]
Aber die Potenzen [mm]> n-1[/mm] von [mm]\zeta_{n}[/mm] lassen sich auf die kleineren zurückführen, meine damit dass beispielsweise [mm]\zeta_{n}^{(n-1)+(n-1)} = \zeta_{n}^{2n-2} = \zeta_{n}^{-2} = \zeta_{n}^{n-2}[/mm].
Und die Koeffizieten sind endliche Summen von Produkten aus Elementen in [mm]\mathbb{Z}[/mm] und somit selbst in [mm]\mathbb{Z}[/mm].
Ist das richtig?
2) Haha, jetzt...
Zu zeigen wäre zuerst: [mm] $\mathbb{Z}\left[\zeta_{n}\right] [/mm] = [mm] \mathbb{Z} [/mm] + [mm] \zeta_{n}\mathbb{Z} [/mm] + [mm] \cdots [/mm] + [mm] \zeta_{n}^{n-1}\mathbb{Z}$ [/mm]
(wie genau mache ich das...)
Daraus folgt: [mm] $\mathbb{Z}\left[\zeta_{n}\right]$ [/mm] ist ein endlich erzeuger, torsionsfreier [mm] $\mathbb{Z}$-Modul. [/mm]
Nun brauche ich den Struktursatz über endlich erzeugte [mm] $\mathbb{Z}$-Moduln. [/mm]
Aber den müsste man hier richtig anwenden.. kann mir jemand auf die Sprünge helfen? Wäre sehr dankbar..
Grüsse, Amaro
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 20:55 Fr 08.10.2010 | Autor: | felixf |
Moin!
> Let [mm]n \ge 1[/mm] be an integer and [mm]\zeta_{n}[/mm] the complex number
> [mm]e^{2\pi i/n}[/mm].
>
> 1) Show that [mm]\mathbb{Z}\left[\zeta_{n}\right][/mm] is a subring
> of the field of complex numbers.
>
> 2) Prove that [mm]\mathbb{Z}\left[\zeta_{n}\right][/mm] is
> noetherian.
>
> Hallo Leute
>
> Ich brauche Hilfe bei der obigen Aufgabe. Ich glaube Teil
> 1) ist relativ simpel, vielleicht hab ich jedoch etwas
> übersehen. Bei Teil 2) hab ich die Idee, kann sie aber
> nicht umsetzen:
>
> 1) Ein Element [mm]a \in \mathbb{Z}\left[\zeta_{n}\right][/mm] hat
> die Form [mm]a = a_{0} + a_{1}\zeta_{n} + \cdots + a_{n-1}\zeta_{n}^{n-1}[/mm]
> und es gilt [mm]\zeta_{n}^{n} = 1[/mm].
> Die ersten 2 Axiome
> (Unterring nicht leer und unter addition abgeschlossen)
> sind offensichtlich, es gilt also zu zeigen, dass es unter
> Multiplikation abgeschlossen ist.
>
> Nehme [mm]a[/mm] und [mm]a'[/mm] beide in [mm]\mathbb{Z}\left[\zeta_{n}\right][/mm], [mm]a[/mm]
> mit Koeffizienten [mm]a_{0},...,a_{n-1}[/mm] und [mm]a'[/mm] mit
> Koeffizienten [mm]a_{0}',...,a_{n-1}'[/mm].
>
> Dann ist [mm]a\cdot a' = (a_{1}+\cdots+a_{n-1}\zeta_{n}^{n-1})(a_{0}'+\cdots+a_{n-1}'\zeta_{n}^{n-1}) = a_{0}a_{0}' + (a_{0}a_{1}'+a_{1}a_{0}')\zeta_{n}+\cdots+(\sum\limits_{i,j}a_{i}a_{j}')\zeta_{n}^{n-1} + \cdots + (\sum\limits_{i,j}a_{i}a_{j}')\zeta_{n}^{(n-1)+(n-1)}[/mm]
>
> Aber die Potenzen [mm]> n-1[/mm] von [mm]\zeta_{n}[/mm] lassen sich auf die
> kleineren zurückführen, meine damit dass beispielsweise
> [mm]\zeta_{n}^{(n-1)+(n-1)} = \zeta_{n}^{2n-2} = \zeta_{n}^{-2} = \zeta_{n}^{n-2}[/mm].
>
> Und die Koeffizieten sind endliche Summen von Produkten aus
> Elementen in [mm]\mathbb{Z}[/mm] und somit selbst in [mm]\mathbb{Z}[/mm].
>
> Ist das richtig?
>
>
> 2) Haha, jetzt...
>
> Zu zeigen wäre zuerst: [mm]\mathbb{Z}\left[\zeta_{n}\right] = \mathbb{Z} + \zeta_{n}\mathbb{Z} + \cdots + \zeta_{n}^{n-1}\mathbb{Z}[/mm]
> (wie genau mache ich das...)
Das folgt aus [mm] $\IZ[\zeta_n]$ [/mm] und dem Fakt, dass [mm] $\zeta_n$ [/mm] ueber [mm] $\IZ$ [/mm] ganz ist. Damit ist [mm] $\IZ[\zeta_n] \cong \IZ[x]/(f)$, [/mm] wobei $f [mm] \in \IZ[x]$ [/mm] ein normiertes Polynom vom Grad [mm] $\phi(n)$ [/mm] ist.
> Daraus folgt: [mm]\mathbb{Z}\left[\zeta_{n}\right][/mm] ist ein
> endlich erzeuger, torsionsfreier [mm]\mathbb{Z}[/mm]-Modul.
> Nun brauche ich den Struktursatz über endlich erzeugte
> [mm]\mathbb{Z}[/mm]-Moduln.
> Aber den müsste man hier richtig anwenden.. kann mir
> jemand auf die Sprünge helfen? Wäre sehr dankbar..
Der Satz liefert dir, dass [mm] $\IZ[\zeta_n]$ [/mm] ein freier [mm] $\IZ$-Modul [/mm] von endlichen Rang ist.
Es reicht aber schon, wenn du benutzt, dass jeder endlich erzeugte Modul (hier: [mm] $\IZ[\zeta_n]$) [/mm] ueber einem noetherschen Ring (hier: [mm] $\IZ$) [/mm] wieder noethersch ist (als Modul ueber den Ring, aber damit auch als Ring selber, falls es ein Ring ist wie hier).
LG Felix
|
|
|
|