matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperKreisteilungskörper
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Gruppe, Ring, Körper" - Kreisteilungskörper
Kreisteilungskörper < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kreisteilungskörper: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:32 So 10.01.2016
Autor: valoo

Aufgabe
Seien [mm] L_{k}:= \IQ [/mm] ( [mm] \zeta_{2^{k}} [/mm] ).
Zeigen Sie:
(a) [mm] [L_{k+1} [/mm] : [mm] L_{k} [/mm] ] = 2

(b) [mm] N_{L_{k+1} / L_{k}} [/mm] ( [mm] \zeta_{2^{k+1}} [/mm] ) = - [mm] \zeta_{2^{k}} [/mm]

Hallo allerseits!

Mir ist schon klar, dass der Grad vom n-ten Kreisteilungskörper [mm] \varphi(n) [/mm] ist, das darf hier jedoch nicht benutzt werden. Die Norm wurde nur für quadratische Erweiterungen einfach als $ N(x)=x [mm] \sigma(x) [/mm] $ für den nicht trivialen Automorphismus [mm] \sigma [/mm] definiert. Mittels b) soll man induktiv a) beweisen können...was ich nicht verstehe. Der Grad ist 1 oder 2, da Zerfällungskörper von $ [mm] X^{2} [/mm] - [mm] \zeta_{2^{k}} [/mm] $. Wenn er aber nun 1 wäre, so wäre die Norm - so wie wir sie definiert haben - nicht definiert und b) könnte man gar nicht beweisen.
Es muss doch elementar irgendwie möglich sein zu zeigen, dass allgemeiner der m-te Kreisteilungskörper nur dann im n-ten Kreisteilungskörper enthalten ist, wenn m ein Teiler von n ist. Oder dass der n-te Kreisteilungskörper keine anderen Einheitswurzeln enthält?
Hat jemand eine Idee, wie man das möglichst leicht einsieht?

LG
valoo

        
Bezug
Kreisteilungskörper: Antwort
Status: (Antwort) fertig Status 
Datum: 09:46 Di 12.01.2016
Autor: statler

Hi!

> Seien [mm]L_{k}:= \IQ[/mm] ( [mm]\zeta_{2^{k}}[/mm] ).
>  Zeigen Sie:
>  (a) [mm][L_{k+1}[/mm] : [mm]L_{k}[/mm] ] = 2
>
> (b) [mm]N_{L_{k+1} / L_{k}}[/mm] ( [mm]\zeta_{2^{k+1}}[/mm] ) = -
> [mm]\zeta_{2^{k}}[/mm]

> Mir ist schon klar, dass der Grad vom n-ten
> Kreisteilungskörper [mm]\varphi(n)[/mm] ist, das darf hier jedoch
> nicht benutzt werden. Die Norm wurde nur für quadratische
> Erweiterungen einfach als [mm]N(x)=x \sigma(x)[/mm] für den nicht
> trivialen Automorphismus [mm]\sigma[/mm] definiert. Mittels b) soll
> man induktiv a) beweisen können...was ich nicht verstehe.
> Der Grad ist 1 oder 2, da Zerfällungskörper von [mm]X^{2} - \zeta_{2^{k}} [/mm].

Das Polynom ist irreduzibel, da es sonst in 2 Linearfaktoren zerfallen würde, also die Lösungen im Grundkörper lägen, was nicht geht, da [mm] \zeta_{2^k} [/mm] ein erzeugendes Element der multiplikativen Gruppe der Einheitswurzeln ist und deswegen kein Quadrat sein kann.

> Wenn er aber nun 1 wäre, so wäre die Norm - so wie wir
> sie definiert haben - nicht definiert und b) könnte man
> gar nicht beweisen.

Die Norm ist also einfach [mm] \zeta_{2^{k+1}}*(-\zeta_{2^{k+1}}) [/mm] (oder auch der konstante Term des Minimalpolynoms).

> Es muss doch elementar irgendwie möglich sein zu zeigen,
> dass allgemeiner der m-te Kreisteilungskörper nur dann im
> n-ten Kreisteilungskörper enthalten ist, wenn m ein Teiler
> von n ist. Oder dass der n-te Kreisteilungskörper keine
> anderen Einheitswurzeln enthält?
> Hat jemand eine Idee, wie man das möglichst leicht
> einsieht?

Über die Struktur der zyklischen Gruppe.
Gruß aus HH
Dieter


Bezug
                
Bezug
Kreisteilungskörper: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:31 Mi 13.01.2016
Autor: valoo

Die Frage ist aber, warum $ [mm] \IQ [/mm] ( [mm] \zeta_{2^{k}} [/mm] ) $ nur die [mm] 2^{k} [/mm] -ten Einheitswurzeln enthaelt. Anschaulich klar, aber wie beweist man dass [mm] \zeta_{2^{k+1}} [/mm] da tatsaechlich nicht drin ist? Das ist uns ueberhaupt noch nicht bekannt. Warum kann [mm] \zeta_{2^{k+1}} [/mm] nicht von der Form

[mm] \sum_{i=0}^{2^{k} - 1} a_{i} \zeta_{2^{k}}^{i} [/mm]

sein?

Also, das soll man ja irgendwie induktiv mit der Norm beweisen koennen. Wenn ich im Induktionsschritt annehmen, dass  [ [mm] L_{k+1} [/mm] : [mm] L_{k} [/mm] ] = 1 ist, so gaebe es $ a , b [mm] \in L_{k-1} [/mm] $ mit

$ [mm] \zeta_{2^{k+1}} [/mm] = a + b [mm] \zeta_{2^{k}} [/mm] $

wenn ich das quadriere und die Norm N von [mm] L_{k} [/mm] nach [mm] L_{k-1} [/mm] nehme, gilt:

$ - [mm] \zeta_{k-1} [/mm] = N( a + b [mm] \zeta_{2^{k}})^{2} [/mm] = ( ( a + b [mm] \zeta_{2^{k}} [/mm] ) ( a - b [mm] \zeta_{2^{k}} [/mm] ) [mm] )^{2} [/mm] = ( [mm] a^{2} [/mm] - [mm] b^{2} \zeta_{2^{k-1}} )^{2} [/mm] $

[mm] \Leftrightarrow [/mm]

[mm] \zeta_{2^{k-1}} [/mm]  = [mm] \frac{a^{4} + b^{4} \zeta_{2^{k-2}}}{2 a^{2} b^{2} - 1} [/mm]

Ich sehe aber nicht, wie man hier weitermachen sollte...

Bezug
                        
Bezug
Kreisteilungskörper: Antwort
Status: (Antwort) fertig Status 
Datum: 14:41 Do 14.01.2016
Autor: statler

Mahlzeit!

> Die Frage ist aber, warum [mm]\IQ ( \zeta_{2^{k}} )[/mm] nur die
> [mm]2^{k}[/mm] -ten Einheitswurzeln enthaelt. Anschaulich klar, aber
> wie beweist man dass [mm]\zeta_{2^{k+1}}[/mm] da tatsaechlich nicht
> drin ist?

Ein möglicher Ansatz: f(X) = [mm] X^{2^{k+1}} [/mm] - 1 hat höchstens [mm] 2^{k+1} [/mm] Nullstellen, weil wir in einem Körper zugange sind. Die sind auch alle verschieden, weil f(X) und f'(X) teilerfremd sind. Jetzt mach dieselbe Überlegung für k statt k+1, und du siehst, daß die eine Menge doppelt so groß ist wie die andere. Und die [mm] 2^k [/mm] Quadrate der Elemente der größeren Menge bilden gerade die kleinere Menge.
Der Dreh ist meiner Meinung nach, daß die multiplikative Gruppe der Einheitswurzeln zyklisch ist, der Beweis dafür funktioniert wie bei endlichen Körpern.

> Das ist uns ueberhaupt noch nicht bekannt. Warum
> kann [mm]\zeta_{2^{k+1}}[/mm] nicht von der Form
>  
> [mm]\sum_{i=0}^{2^{k} - 1} a_{i} \zeta_{2^{k}}^{i}[/mm]
>  
> sein?
>
> Also, das soll man ja irgendwie induktiv mit der Norm
> beweisen koennen.

Das ist mir im Moment auch nicht klar.

Gruß
Dieter

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]