matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSonstigesKreistangente
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Sonstiges" - Kreistangente
Kreistangente < Sonstiges < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kreistangente: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:06 Mi 23.01.2008
Autor: holladiewaldfee

Aufgabe
Gegeben sei der Mittelpunkt M (3/-1/1) und der Berührpunkt
B (4/3/-2).
Gefragt ist die Gleichung der Kreistangente

Die Gleichung der Kreistangente ist doch
(xB-XM)* (x-xm)+ (yb-ym) * (y-ym) = [mm] r^2 [/mm]

nach einsetzen der Werte:
(-3+2)*(x+2) +( 2+12)*(y+12) = [mm] r^2 [/mm]

-6 *(x+2) + 14*(y+12) = [mm] r^2 [/mm]

r = IMBI (Vektor) = (1/6/-3)(Vektor)

Länge des Vektors: [mm] wurzel{a1^2+a2^2+a3^2} [/mm]
r = 46
-6 * (x+2) + 14* (y+12) = 2116

mit pq- formel komme ich jedoch auf zwei verschiedene werte für den radius (0,5166 und -4,5166)

setze ich diese nun in die gleichung ein erhalte ich zwei tangenten --- irgendwas ist hier grundlegend falsch.

wär nett, wenn jemand weiterhelfen könnte

mfg Johanna


        
Bezug
Kreistangente: Antwort
Status: (Antwort) fertig Status 
Datum: 12:30 Mi 23.01.2008
Autor: weduwe


> Gegeben sei der Mittelpunkt M (3/-1/1) und der Berührpunkt
>  B (4/3/-2).
>  Gefragt ist die Gleichung der Kreistangente
>  Die Gleichung der Kreistangente ist doch
>  (xB-XM)* (x-xm)+ (yb-ym) * (y-ym) = [mm]r^2[/mm]
>  
> nach einsetzen der Werte:
>  (-3+2)*(x+2) +( 2+12)*(y+12) = [mm]r^2[/mm]
>  
> -6 *(x+2) + 14*(y+12) = [mm]r^2[/mm]
>  
> r = IMBI (Vektor) = (1/6/-3)(Vektor)
>  
> Länge des Vektors: [mm]wurzel{a1^2+a2^2+a3^2}[/mm]
>  r = 46
>  -6 * (x+2) + 14* (y+12) = 2116
>  
> mit pq- formel komme ich jedoch auf zwei verschiedene werte
> für den radius (0,5166 und -4,5166)
>  
> setze ich diese nun in die gleichung ein erhalte ich zwei
> tangenten --- irgendwas ist hier grundlegend falsch.
>  
> wär nett, wenn jemand weiterhelfen könnte
>  
> mfg Johanna
>  

grundlegend falsch ist (z.b.), dass du kreis und kreistangente suchst.

es dürfte sich
a) um eine kugel handeln - sicher nicht um einen kreis - und
b) sollst du vermutlich die tangentialEBENE suchen.

wenn dem so ist:

der normalvektor der ebene ist der radiusvektor [mm] \vec{n}=\overrightarrow{MB}=\vektor{1\\4\\-3}. [/mm]
da du den berührpunkt kennst, solltest du nun die gleichung der ebene aufstellen können.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]