matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationstheorieKreisscheibe, Polarkoord.
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Integrationstheorie" - Kreisscheibe, Polarkoord.
Kreisscheibe, Polarkoord. < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kreisscheibe, Polarkoord.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:46 Mi 18.01.2017
Autor: ChopSuey

Aufgabe
Es sei $ C = [mm] \partial [/mm] D$ der Rand des Gebietes in der oberen Halbebene von $ [mm] \IR^2$, [/mm] begrenzt von den Kreislinien $ [mm] x^2+y^2=1$ [/mm] und [mm] $x^2+y^2+4$. [/mm] Berechnen Sie das Kurvenintegral

$ [mm] \int_{C} [/mm] y^2dx+3xydy$


Hallo,

ich hatte kurz überlegt diese Frage in meinen alten Thread zu stellen aber der Übersichtlichkeit wegen dachte ich, dass eine neue Frage sinnvoller ist.

Wenn ich das richtig sehe, dann müsste der Integrationsbereich $ B$ wie folgt aussehen (siehe Anhang):

[Dateianhang nicht öffentlich]

(Entschuldigt bitte, ich habe vergessen das Bild um 90° zu drehen. Zu sehen ist die x-y-Achse)

Ich war schließlich soweit, dass nur noch $ [mm] \int_{C}F(x)dx [/mm] + F(y)dy [mm] =\int_B \left(\frac{\partial F(x)}{\partial y}-\frac{\partial F(y)}{\partial x}\right)(dx,y) [/mm] = [mm] \int_B [/mm] y(dx,y)$ zu lösen blieb.

Nun bietet sich ja ein Koordinatenwechsel zu Polarkoordinaten an. Stimmt denn meine Skizze des Integrationsbereichs $ B$ ? In der Lösung wird nämlich als Integrationsbereich nur der Kreis mit Radius $ r =2 $ herangezogen. Aber der Bereich wird ja noch von der Kreislinie mit Radius $ r = 1$ begrenzt.

Außerdem wird bei der Transformation $ y = r [mm] \cos \varphi [/mm] $ gewählt, so dass dort steht

$ [mm] \int_B [/mm] y(dx,y) = [mm] \int_0^2 \left(\int_{-\pi}^{\pi} r \cos \varphi)d\varphi\right)rdr [/mm] $

Das verstehe ich nicht. Warum hat das äußere Integral die Grenzen $ 0$ bis $2 $ und das innere $ [mm] -\pi$ [/mm] bis [mm] $\pi$. [/mm] Ersteres ergibt für mich keinen Sinn da meiner Auffassung nach der Integrationsbereich doch eher von $ 1$ bis $ 2 $ gehen müsste (da dort der Rand des Integrationsbereichs liegt) und zweiteres ergibt für mich keinen Sinn da wir doch keine ganze Kreisfläche beschreiben sondern nur die halbe Kreisfläche bzgl$ [mm] \varphi$. [/mm] Laut Aufgabenstellung soll ja die obere Halbebene des $ [mm] \IR^2$ [/mm] betrachtet werden.

Außerdem: Warum wird $ y = r [mm] \cos \varphi$ [/mm] transformiert? Es müsste doch $ y = r [mm] \sin \varphi$ [/mm] sein, oder nicht?


Habe ich vielleicht irgendwas grundlegend falsch verstanden oder liegt der Fehler in der Lösung?

Würde mich über Hinweise wie immer sehr freuen.
Vielen Dank an jeden der sich die Zeit nimmt.

LG,
ChopSuey

Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
        
Bezug
Kreisscheibe, Polarkoord.: Antwort
Status: (Antwort) fertig Status 
Datum: 20:06 Mi 18.01.2017
Autor: leduart

Hallo
1. wenn da [mm] x^2+y^2=4 [/mm] steht ist dein Gebiet richtig.
ob du [mm] y=rcos(\phi) [/mm] oder [mm] y)rein(\phi [/mm] schreibt, beeinflusst nur den Integrationsbereich. für [mm] y=rcos\phi [/mm] geht [mm] \phi [/mm] von y>0 von [mm] -\pi/2 [/mm] bis [mm] +\pi\2 [/mm]
also sind die Grenzen an dem Integral falsch, das geht über die ganze Kreisscheibe, ausserdem muss für den Halbkreisring  r von 0 bis 1 gehen
zu der Aufgabe psst also die Lösung nicht (ist falsch) vielleicht gehört sie zu einer anderen Aufgabe?
Gruß lesbart,


Bezug
                
Bezug
Kreisscheibe, Polarkoord.: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:36 Mi 18.01.2017
Autor: ChopSuey

Hallo Leduart,

vielen Dank für Deine Hilfe! Du hast mir schon sehr geholfen. Ich hab gerade nochmal nachgesehen und tatsächlich war die Lösung bloß falsch nummeriert. Hab das vorhin partout nicht gesehen.

Ich meld mich bei Fragen nochmal. Vielen Dank soweit für die Rückmeldung.

LG,
ChopSuey

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]