matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-NumerikKreisintegral
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Numerik" - Kreisintegral
Kreisintegral < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kreisintegral: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 17:12 Di 03.04.2007
Autor: Leucram

Aufgabe
Berechne  [mm] I=\integral_{\gamma}^{}{(e^{\alpha*z}/{z^k}) dz} [/mm]

[mm] \alpha>0 [/mm]
k=1,2,3
[mm] \gamma [/mm] ist der positiv durchlaufende einheitskreis

hi, ich hab bei der aufgabe irgendwie probleme.

ich würde mit der isolierten singularität bei z=0 anfangen und die mit dem residuensatz berechnen.

--> [mm] 2*\pi*i*Res(f,z)=2*\pi*i*e^{\alpha*z}/{(z^k)^' } [/mm]   | z=0
--> [mm] =2*\pi*i*e^0 [/mm]

aber das kann irgendwie nicht stimmen, und die isolierte singularität wird bei z=0 wird doch eigentlich nicht von den einheitskreis durchlaufen.
aber ich find keinen anderen ansatz das integral zu lösen :(

vieleicht kann ja einer von euch mir bitte helfen?


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.




        
Bezug
Kreisintegral: Antwort
Status: (Antwort) fertig Status 
Datum: 18:39 Di 03.04.2007
Autor: Event_Horizon

Hallo!

Ich denke, du stehst nur etwas auf dem Schlauch:

Das ist vollkommen korrekt, das Residuum eines Einfachpoles ist 1.

UND: Die Residuen geben dir tatsächlich den Wert eines Integrales an, der um sie herumführt. Es ist egal, welchen Weg du nimmst, "brave" Funktionen, wie dein Zähler, haben auf einem geschlossenen Weg immer Integral = 0. Erst der Pol gibt einen anderen Wert.

Der Anteil des Pols wird eben mittels Residuen bestimmt.

Somit ist dein bisher geschriebenes vollkommen korrekt, für die Pole höherer Odnung kommt natürlich ein klein wenig was anderes raus.


Ich meine, das ganze ist doch grade das verrückte an den Residuen!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]