matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra / VektorrechnungKreisgleichung gesucht
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Algebra / Vektorrechnung" - Kreisgleichung gesucht
Kreisgleichung gesucht < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kreisgleichung gesucht: Tipp
Status: (Frage) beantwortet Status 
Datum: 18:36 So 12.10.2014
Autor: Ne0the0ne

Aufgabe
Stellen Sie die Gleichungen all der Kreise auf, die die Koordinatenachsen berühren und durch den Punkt P (1,2) gehen.
Geben Sie die zugehörigen Mittelpunkte und Radien an.

Hallo,
ich habe bei der Aufgabe mir eine Skizze angefertigt und festgestellt, das (eigentlich) nur 2 Kreise in Frage kommen.

[mm] k_{1}: [/mm] (x-1)² + (y-1)² = 1

Nun habe ich aber Probleme [mm] k_{2} [/mm] aufzustellen.
Ich weiß, dass 3 Bedingungen gegeben sind:
[mm] S_{x} (x_{s};0) [/mm]
[mm] S_{y} [/mm] (0; [mm] y_{s}) [/mm]
P (1,2)

Aus diesen 3 Bedingungen kann ich 3 Gleichungen erstellen, allerdings wäre dann das Gleichungssystem unterdimensioniert.

Was kann ich tun, um [mm] k_{2} [/mm] herauszufinden?

        
Bezug
Kreisgleichung gesucht: Antwort
Status: (Antwort) fertig Status 
Datum: 19:10 So 12.10.2014
Autor: Fulla

Hallo NeOtheOne!

> Stellen Sie die Gleichungen all der Kreise auf, die die
> Koordinatenachsen berühren und durch den Punkt P (1,2)
> gehen.
> Geben Sie die zugehörigen Mittelpunkte und Radien an.
> Hallo,
> ich habe bei der Aufgabe mir eine Skizze angefertigt und
> festgestellt, das (eigentlich) nur 2 Kreise in Frage
> kommen.

>

> [mm]k_{1}:[/mm] (x-1)² + (y-1)² = 1

[ok]

> Nun habe ich aber Probleme [mm]k_{2}[/mm] aufzustellen.
> Ich weiß, dass 3 Bedingungen gegeben sind:
> [mm]S_{x} (x_{s};0)[/mm]
> [mm]S_{y}[/mm] (0; [mm]y_{s})[/mm]

Anhand deiner Skizze sollstes du erkennen können, dass [mm]x_S=y_S=r[/mm] (*) gelten muss.

> P (1,2)

>

> Aus diesen 3 Bedingungen kann ich 3 Gleichungen erstellen,
> allerdings wäre dann das Gleichungssystem
> unterdimensioniert.

>

> Was kann ich tun, um [mm]k_{2}[/mm] herauszufinden?

Mach aus den drei Gleichungen eine. Benutze (*) in der allgemeinen Kreisgleichung [mm](x-x_S)^2 + (y-y_S)^2=r^2[/mm] und erhalte etwa [mm](x-r)^2+(y-r)^2=r^2[/mm].

Jetzt kannst du die Koordinaten von [mm]P[/mm] einsetzen und so [mm]r[/mm] bestimmen. (Du erhältst so übrigens als zweite Lösung dein [mm]k_1[/mm].)


Lieben Gruß,
Fulla

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]