matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenVektorenKreisgleichung bestimmen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Vektoren" - Kreisgleichung bestimmen
Kreisgleichung bestimmen < Vektoren < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kreisgleichung bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:04 Mi 28.01.2009
Autor: Dinker

Ermitteln Sie die Gleichungen der Kreise, die:
- x-Achse berühren
- Durch P(5/2) gehen
den Kreis k': [mm] x^{2} [/mm] + [mm] (y-6)^{2} [/mm] = 1

Der gesuchte Kreis: Mittelpunkt (u/v)
(x - [mm] u)^{2} [/mm] + (y - [mm] v)^{2} [/mm] = [mm] r^{2} [/mm]

Gleichung 1: P(5/2) liegt auf Kreis
(5 - [mm] u)^{2} [/mm] + (2 - [mm] v)^{2} [/mm] = [mm] r^{2} [/mm]

Gleichung 2: Berührt x-Achse
v = r

Gleichung 3: Berührt k'          [mm] M_{1} [/mm] = (0/6)
[mm] \overrightarrow{MM_{1}} [/mm] = [mm] \vektor{u \\ v-6} [/mm]
[mm] \overrightarrow{MM_{1}} [/mm] = 1 + r
[mm] u^{2} [/mm] + (v - [mm] 6)^{2} [/mm] = (1 + [mm] r)^{2} [/mm]

Die drei Gleichungen:
(1) (5 - [mm] u)^{2} [/mm] + (2 - [mm] v)^{2} [/mm] = [mm] r^{2} [/mm]
(2) v = r
(3) [mm] u^{2} [/mm] + (v - [mm] 6)^{2} [/mm] = (1 + [mm] r)^{2} [/mm]

Setze (2) in (1) und (3) ein
(1) (5 - [mm] u)^{2} [/mm] + (2 - [mm] v)^{2} [/mm] = [mm] v^{2} [/mm]
(3) [mm] u^{2} [/mm] + (v - [mm] 6)^{2} [/mm] = (1 [mm] +v)^{2} [/mm]

Klammere aus
(1) [mm] u^{2} [/mm] -10u -4v+29 = 0
(3) [mm] u^{2} [/mm] - 14v +35 = 0  

(1) v = 0.25 [mm] u^{2} [/mm] -2.5u + 7.25 = v    l setze nun bei (3) ein    

[mm] u^{2} [/mm] - 14(0.25 [mm] u^{2} [/mm] -2.5u + 7.25) +35 = 0  
-2.5 [mm] u^{2} [/mm] + 3.5u -66.5 = 0

[mm] u_{1} [/mm]   = 2.27
[mm] u_{2} [/mm]   = 11.73

Durch diese sehr umständliche Zahlen zweifle ich die Richtigkeit des bisherigen Lösungsweges sehr stark an.

Wäre sehr dankbar um deine Hilfe

Gruss DInker


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.











        
Bezug
Kreisgleichung bestimmen: korrekt
Status: (Antwort) fertig Status 
Datum: 15:29 Mi 28.01.2009
Autor: Loddar

Hallo Dinker!


Auch wenn es krumme Ergebnisse sind ... sie sind richtig (zumindest habe ich dieselben Werte erhalten). Und auch die entsprechende Zeichnung passt!


Gruß
Loddar


Bezug
        
Bezug
Kreisgleichung bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:41 Mi 28.01.2009
Autor: Al-Chwarizmi

hallo Dinker,

hast du dir überlegt, wie viele Lösungen es geben
könnte ?
Vielleicht gibt es unter den verschiedenen Lösungs-
kreisen auch solche mit runden Mittelpunktskoor-
dinaten.

Natürlich ist es nett, dass viele Schulbuchaufgaben
"schöne" Resultate haben. Vielleicht wird man aber
durch solche sorgfältig präparierten Übungen fast
zu sehr verwöhnt ...

LG


Tipp: ein möglicher Kreismittelpunkt ist M(15/26).

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]