matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenVektorenKreise und Kugeln
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Vektoren" - Kreise und Kugeln
Kreise und Kugeln < Vektoren < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kreise und Kugeln: Kreise
Status: (Frage) beantwortet Status 
Datum: 11:38 So 06.11.2011
Autor: Rosali

Aufgabe
Bestimmen sie den Mittelpunkt und den Radius des Kreises k:x²+y²-8(x+y)=4

hab diese aufgabe bisher eher andersrum gemacht, also eine Kreisgleichung mit hilfe von punkten erstellen, wie mache ich es hier?

        
Bezug
Kreise und Kugeln: Antwort
Status: (Antwort) fertig Status 
Datum: 11:44 So 06.11.2011
Autor: donquijote


> Bestimmen sie den Mittelpunkt und den Radius des Kreises
> k:x²+y²-8(x+y)=4
>  hab diese aufgabe bisher eher andersrum gemacht, also eine
> Kreisgleichung mit hilfe von punkten erstellen, wie mache
> ich es hier?

Du suchst dir a,b und r, sodass die Gleichung äquivalent wird zu [mm] (x-a)^2+(y-b)^2=r^2, [/mm]
also [mm] x^2-2ax+a^2+y^2-2by+b^2=r^2. [/mm]
a,b und r erhältst du dann durch Vergleich der Koeffizienten.

Bezug
                
Bezug
Kreise und Kugeln: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:48 So 06.11.2011
Autor: Rosali

sorry, das ist zu kurz erklärt für mich wie soll ich mir denn a,b, und r suchen?

Bezug
                        
Bezug
Kreise und Kugeln: Antwort
Status: (Antwort) fertig Status 
Datum: 11:56 So 06.11.2011
Autor: donquijote


> sorry, das ist zu kurz erklärt für mich wie soll ich mir
> denn a,b, und r suchen?

Zum einen hast du
[mm] x^2+y^2-8x-8y=4, [/mm] zum anderen die allgemeine Kreisgleichung
[mm] x^2+y^2-2ax-2by+a^2+b^2=r^2 [/mm]
Es folgt, dass [mm] 2a=8\Leftrightarrow [/mm] a=4 und [mm] 2b=8\Leftrightarrow [/mm] b=4 gilten muss.
Das setzt du in die untere Gleichung ein:
[mm] 4=x^2+y^2-8x-8y+2*16=r^2\Leftrightarrow r^2=36\Leftrightarrow [/mm] r=6

Bezug
                                
Bezug
Kreise und Kugeln: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:10 So 06.11.2011
Autor: Rosali

ok den ersten schritt habe ich verstanden der mittelpunkt ist demnach 4/4 was man ja nur nich ablesen muss, aber wie kommst du auf 2*16 in der letzten Gleichung, sorry ich frag lieber alles nach damit ich es auch kapier ;)

Bezug
                                        
Bezug
Kreise und Kugeln: Antwort
Status: (Antwort) fertig Status 
Datum: 12:18 So 06.11.2011
Autor: donquijote

Mit a/b=4/4 hast du die zwei Gleichungen
[mm] x^2+y^2-8(x+y)=4 [/mm] und
[mm] (x-4)^2+(y-4)^2=r^2\Leftrightarrow x^2+y^2-8(x+y)+4^2+4^2=r^2\Leftrightarrow x^2+y^2-8(x+y)=r^2-2*16 [/mm]
Es folgt [mm] r^2-2*16=4\Leftrightarrow r^2=36 [/mm]

Bezug
                                                
Bezug
Kreise und Kugeln: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 14:24 So 06.11.2011
Autor: Rosali

also soweit ist das verfahren klar,nur der letzte schritt ist für mich noch nicht ganz verständlich, warum darf ich r²-32 einfach mit 4 aus der gegebenen gleichung gleichsetzen?

Bezug
                                                        
Bezug
Kreise und Kugeln: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:20 Di 08.11.2011
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
                                                
Bezug
Kreise und Kugeln: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:39 So 06.11.2011
Autor: abakus


> Mit a/b=4/4 hast du die zwei Gleichungen
>  [mm]x^2+y^2-8(x+y)=4[/mm] und
>  [mm](x-4)^2+(y-4)^2=r^2\Leftrightarrow x^2+y^2-8(x+y)+4^2+4^2=r^2\Leftrightarrow x^2+y^2-8(x+y)=r^2-2*16[/mm]
>  
> Es folgt [mm]r^2-2*16=4\Leftrightarrow r^2=36[/mm]  

Hallo,
es ist für das Verständnis günstiger, die linke Seite etwas umzusortieren
Sie lautet:
[mm] x^2-8x [/mm]
+
[mm] y^2-8y [/mm]

Es wäre außerordentlich günstig, wenn nicht nur das, sondern zusätzlich noch das rot hinzugefügte stehen würde:
[mm] x^2-8x\red{+16} [/mm]
+
[mm] y^2-8y\red{+16} [/mm]
(Frage: Warum wäre das günstig???)

Aus diesem Grund addiert man die Gleichung
[mm] x^2-8x+y^2-8y [/mm] =4 auf beiden Seiten mit (16+16), also mit 32.
Gruß Abakus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]