matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra / VektorrechnungKreise im Koordinatensystem
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Algebra / Vektorrechnung" - Kreise im Koordinatensystem
Kreise im Koordinatensystem < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kreise im Koordinatensystem: Tipp
Status: (Frage) beantwortet Status 
Datum: 17:09 So 28.05.2006
Autor: Laura1988

Aufgabe
Aufgabe 1
Gegeben ist die Funktion f mit dem
Funktionsterm
f(x)= [mm] x^3 [/mm] - [mm] 6x^2 [/mm] + 8x und dem nebenstehenden Graphen.
a) Berechnen Sie die Nullstellen
und die Extremstellen.
b) Berechnen Sie den Wendepunkt
und die Gleichung der Wendetangente.
c) Zeigen Sie, dass die Normale durch den Wendepunkt die Gleichung
y=1/4 x -  1/2
hat und skizzieren Sie Tangente und Normale in die obige Darstellung.
d) Berechnen Sie die Gleichung des Kreises, dessen Mittelpunkt auf der y-Achse liegt und
der die Wendetangente als Tangente hat.

Brauch nochmal eure Hilfe. Die Aufgaben a) - c) sind eigentlich kein Problem nur d) bekomme ich nicht heraus. Da die Abbildung auch keine Einheiten hat, könnte ich sie höchstens selbst zeichnerisch lösen.
Die Lösung zu der Aufgabe befindet sich hier http://www.bezreg-arnsberg.nrw.de/dieBezirksregierung/aufbau/abteilungen/abteilung4/dezernat43/download/mathe_2002_pdf.pdf
EIgentlich versteh ich nur eins nicht:Warum ist der Schnittpunkt der Normalen mit der y-Achse der Mittelpunkt des Kreises?

Vielen Dank schonmal ;-)



Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Kreise im Koordinatensystem: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:21 So 28.05.2006
Autor: Teufel

Gibt es nicht unendlich viele Kreise für d)? Wenn man den Mittelpunkt einfach höher setzt auf der y-Achse muss man doch nur den Radius größer machen und schon hat man einen anderen Kreis, der die Vorraussetzung erfüllt... oder liege ich da falsch?

EDIT: Das mit der Normalen ist einfach zu erklären: Wenn du eine Tangente an deinen Kreis zeichnest und von der Tangente die Normale zeichnest (an der Berüherstelle mit dem Kreisbogen), dann geht die Normale immer durch den Mittelpunkt des Kreises.

Aber wenn man sich den Mittelpunkt bei M(0|20) setzt würde der Kreis mit einem Radius von ca. r=8,4LE die Aufgabe auch erfüllen... Schlecht gestellt :D ich würde mich beschweren!

Bezug
        
Bezug
Kreise im Koordinatensystem: Antwort
Status: (Antwort) fertig Status 
Datum: 21:55 Mo 29.05.2006
Autor: zerbinetta

Hallo Laura,

ich schließe mich Teufel an: so ist die Aufgabe nicht eindeutig lösbar.
In der beigefügten Lösung heißt es aber:

> Der Schnittpunkt der Normalen mit der y-Achse P1(0/-0,5) ist der
> Mittelpunkt des Kreises.
> Der Wendepunkt P2(0/2) ist ein Punkt des Kreises.

Das heißt, in der Musterlösung wird plötzlich vorausgesetzt, dass der Kreis die Tangente genau im Wendepunkt der Funktion berühren soll.

(Man kann nur hoffen, dass die Klausur nicht wirklich so gestellt worden ist...)

Viele Grüße,
zerbinetta


Bezug
                
Bezug
Kreise im Koordinatensystem: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:02 Mo 29.05.2006
Autor: Teufel

Hallo zerbi :)

Aber mich würde mal interessieren, was passieren würde, wenn man wirklich so eine Aufgabe gestellt bekommen würde in einer Klausur. Wenn da wirklich steht  der Kreis und nicht ein Kreis. Könnte man damit argumentieren, dass es unendlich viele Lösungen gibt? Oder müsste man sich dann einen Fall herauspicken (der mit dem Schnittpunkt von Normalen und y-Achse war ja in dem Fall der einfachste)?
Würde man, wenn man sagt, dass es nicht den Kreis gibt volle Punkte bekommen? Oder garkeine oder etwas dazwischen? :)

Bezug
                        
Bezug
Kreise im Koordinatensystem: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:22 Mo 29.05.2006
Autor: zerbinetta

Teuflische Frage... ;-)

> Aber mich würde mal interessieren, was passieren würde,
> wenn man wirklich so eine Aufgabe gestellt bekommen würde
> in einer Klausur. Wenn da wirklich steht  der Kreis und
> nicht ein Kreis. Könnte man damit argumentieren, dass es
> unendlich viele Lösungen gibt?

Das wäre ja eigentlich richtig...

> Oder müsste man sich dann
> einen Fall herauspicken (der mit dem Schnittpunkt von
> Normalen und y-Achse war ja in dem Fall der einfachste)?

Zumindest wäre es nicht verkehrt, zumindest diesen Fall explizit anzugeben, da er ja irgendwie naheliegend ist.

>  Würde man, wenn man sagt, dass es nicht den Kreis gibt
> volle Punkte bekommen? Oder garkeine oder etwas dazwischen?
> :)

Tja, das ist nun mal das Problem von zentral gestellten Klausuren - schließlich werden sie ja nicht wirklich zentral korrigiert. Jedenfalls ist es denkbar, dass unterschiedliche Korrektoren unterschiedlich entscheiden, obwohl das in diesem Fall (meiner Meinung nach) recht eindeutig ist. Andererseits kann man keinem Schüler einen Strick daraus drehen, der wirklich nur einen Kreis angibt. Denn schließlich war die Aufgabenstellung entsprechend formuliert...

Viele Grüße,
zerbinetta

Bezug
                        
Bezug
Kreise im Koordinatensystem: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:39 Mo 29.05.2006
Autor: Teufel

Ok, ich danke dir :)

Bezug
                        
Bezug
Kreise im Koordinatensystem: Antwort
Status: (Antwort) fertig Status 
Datum: 09:01 Di 30.05.2006
Autor: Sigrid

Hallo Teufel,

> Hallo zerbi :)
>  
> Aber mich würde mal interessieren, was passieren würde,
> wenn man wirklich so eine Aufgabe gestellt bekommen würde
> in einer Klausur. Wenn da wirklich steht  der Kreis und
> nicht ein Kreis. Könnte man damit argumentieren, dass es
> unendlich viele Lösungen gibt? Oder müsste man sich dann
> einen Fall herauspicken (der mit dem Schnittpunkt von
> Normalen und y-Achse war ja in dem Fall der einfachste)?
>  Würde man, wenn man sagt, dass es nicht den Kreis gibt
> volle Punkte bekommen? Oder garkeine oder etwas dazwischen?

Das Eleganteste wäre aus meiner Sicht, wenn du eine allgemeine Lösung angibst. Das heißt du nimmst einen beliebigen Punkt der Wendetangente, bestimmst  die Normale und deren Schnittpunkt mit der y-Achse. Dann hast du den Mittelpunkt des Kreises in Abhängigkeit von der x-Koordinate des gewählten Punktes. Der Radius wird dann mit dem Satz des Pythagoras bestimmt.

Ansonsten gebe ich aber Zerbietta recht. Außerdem gibt es eine Regel: Fehler des Aufgabenstellers dürfen Schülern nicht angelastet werden.

Gruß
Sigrid

> :)

Bezug
                                
Bezug
Kreise im Koordinatensystem: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:59 Di 30.05.2006
Autor: Teufel

Ok, danke :) Man muss ja seine Rechte kennen, damit man dann später nicht veräppelt wird...

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]