matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra / VektorrechnungKreis in der Ebene
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Algebra / Vektorrechnung" - Kreis in der Ebene
Kreis in der Ebene < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kreis in der Ebene: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:34 So 11.02.2007
Autor: Sarah288

Aufgabe
Bestimmen Sie den Kreis, der die [mm] x_1-Achse [/mm] berührt und durch die Punkte P(1|2) und (-3|2) geht.

Hallo zusammen,

ich habe mal eine Frage zur obigen Aufgabe. Die Idee, die dahinter steht, habe ich (endlich!) verstanden.

Ich muss beide Punkte in die Form
[mm] (x_1-r)^2+(x_2-m)^2=r^2 [/mm] bringen und auflösen

Wenn ich beide Formen aufstelle und nach dem Substraktionsverfahren vorgehe, bleibt -8-8r=0 übrig, d.h. der Radius -1, aber ein Radius kann doch nicht negativ sein...

Kann mir vielleicht jemand sagen, wo mein Fehler liegt??
Vielen Dank und liebe Grüße...

        
Bezug
Kreis in der Ebene: Antwort
Status: (Antwort) fertig Status 
Datum: 17:59 So 11.02.2007
Autor: leduart

Hallo Sarah
> Bestimmen Sie den Kreis, der die [mm]x_1-Achse[/mm] berührt und
> durch die Punkte P(1|2) und (-3|2) geht.
>  Hallo zusammen,
>  
> ich habe mal eine Frage zur obigen Aufgabe. Die Idee, die
> dahinter steht, habe ich (endlich!) verstanden.
>
> Ich muss beide Punkte in die Form
> [mm](x_1-r)^2+(x_2-m)^2=r^2[/mm] bringen und auflösen

Hier liegt dein Fehler: wenn der Kreis x1 beruhren soll, ist der Mittelpkt (m,r) nicht (r,m)!
Da beide punkte dieselbe x2 Komp. haben kannst du ausserdem direkt schliessen m=(1-3)/2=-1
Gruss leduart



Bezug
                
Bezug
Kreis in der Ebene: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:02 So 11.02.2007
Autor: Sarah288


Stimmt, du hast recht!

Vielen Dank für deine Antwort...

Liebe Grüße, Sarah

Bezug
        
Bezug
Kreis in der Ebene: Antwort
Status: (Antwort) fertig Status 
Datum: 18:09 So 11.02.2007
Autor: riwe


> Bestimmen Sie den Kreis, der die [mm]x_1-Achse[/mm] berührt und
> durch die Punkte P(1|2) und (-3|2) geht.
>  Hallo zusammen,
>  
> ich habe mal eine Frage zur obigen Aufgabe. Die Idee, die
> dahinter steht, habe ich (endlich!) verstanden.
>
> Ich muss beide Punkte in die Form
> [mm](x_1-r)^2+(x_2-m)^2=r^2[/mm] bringen und auflösen
>  
> Wenn ich beide Formen aufstelle und nach dem
> Substraktionsverfahren vorgehe, bleibt -8-8r=0 übrig, d.h.
> der Radius -1, aber ein Radius kann doch nicht negativ
> sein...
>  
> Kann mir vielleicht jemand sagen, wo mein Fehler liegt??
>  Vielen Dank und liebe Grüße...

wenn der kreis die x-achse berühren soll, lautet seine gleichung
[mm](x-m)²+(y-r)²=r²[/mm]
du hast also - wie es scheint - nicht r berechnet, sondern die x-koordinate des mittelpunktes m = -1

und das eingesetzt ergibt r = 2.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]