matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenZahlentheorieKrasner Lemma
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Zahlentheorie" - Krasner Lemma
Krasner Lemma < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Krasner Lemma: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 00:25 Fr 27.08.2010
Autor: Joan2

Hallo,

ich hoffe es gibt einen Mathematiker, der sich in dem Gebiet auskennt. Und zwar habe ich eine Frage zur weiteren Verwendungsmöglichkeiten des Krasner Lemma in der p-adischen Theorie, das lautet:

Es seien [mm] \overline{Q}_p [/mm] der algebraische Abschluss von [mm] \IQ_p, [/mm] | [mm] |_p [/mm] fortgesetzt auf [mm] \overline{\IQ}_p, [/mm] sei a [mm] \in \overline{\IQ}_p [/mm] und seien [mm] a_i [/mm] die algebraischen Konjugierten von a, [mm] a_i \not= [/mm] a. [mm] \forall [/mm] b [mm] \in \overline{\IQ}_p [/mm] gilt dann:

[mm] |b-a|_p [/mm] < [mm] |a_i [/mm] - [mm] a|_p \forall [/mm] i [mm] \Rightarrow \IQ_p(a) \subset \IQ_p(b). [/mm]


Es besagt also, dass eine Körpererweiterung von a erzeugt in einem vom b erzeugtem enthalten ist, wenn nur b näher bei a liegt als alle Konjugierten von a. Wir haben das Lemma auch verwendet um zu zeigen, dass [mm] \IC_p, [/mm] die Vervollstädigung [mm] \IQ_p [/mm] bzgl | [mm] |_p, [/mm] von vollständig und algebraisch abgeschlossen ist.
Sind das die einzigen Verwendungen und Aussagen oder kann man damit noch mehr machen?


Viele Grüße,
Joan


        
Bezug
Krasner Lemma: Antwort
Status: (Antwort) fertig Status 
Datum: 02:00 Fr 27.08.2010
Autor: felixf

Moin Joan,

> ich hoffe es gibt einen Mathematiker, der sich in dem
> Gebiet auskennt. Und zwar habe ich eine Frage zur weiteren
> Verwendungsmöglichkeiten des Krasner Lemma in der
> p-adischen Theorie, das lautet:

gut auskennen tu ich mich damit nicht, aber vielleicht kann ich dir trotzdem weiterhelfe.

> Es besagt also, dass eine Körpererweiterung von a erzeugt
> in einem vom b erzeugtem enthalten ist, wenn nur b näher
> bei a liegt als alle Konjugierten von a. Wir haben das
> Lemma auch verwendet um zu zeigen, dass [mm]\IC_p,[/mm] die
> Vervollstädigung [mm]\IQ_p[/mm] bzgl | [mm]|_p,[/mm] von vollständig und

Du meinst [mm] $\overline{\IQ_p}$. [/mm]

> algebraisch abgeschlossen ist
>  Sind das die einzigen Verwendungen und Aussagen oder kann
> man damit noch mehr machen?

Laut der []englischen Wikipedia kann man damit zeigen, dass der Galoisabschluss mit der Vervollstaendigung kommutiert: ist $L / K$ eine endliche Erweiterung globaler Koerper (Zahlkoerper oder Funktionenkoerper mit endlichem Konstantenkoerper) und [mm] $\mathfrak{p}$ [/mm] eine Stelle von $L$, und ist $M$ der Galoisabschluss von $L$ ueber $K$, so ist [mm] $M_\mathfrak{p}$ [/mm] der Galoisabschluss von [mm] $L_\mathfrak{p}$ [/mm] ueber [mm] $K_\mathfrak{p}$. [/mm]

(Eine gewisse Aehnlichkeit zur Aussage ueber algebraische Abschluesse ist natuerlich klar.)

Schau auch mal []hier. Da findest du einige Vorkommen, die dir vielleicht einige neue Beispiele liefern.

LG Felix



Bezug
                
Bezug
Krasner Lemma: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 02:05 Fr 27.08.2010
Autor: Joan2

ok, danke ^^

Dann les ich mir mal alles durch :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]