matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMechanikKraft als Vektor?
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Mechanik" - Kraft als Vektor?
Kraft als Vektor? < Mechanik < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mechanik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kraft als Vektor?: Überprüfung
Status: (Frage) beantwortet Status 
Datum: 20:02 Mo 29.10.2012
Autor: Paivren

Aufgabe
Ein Gegentand der Masse m ruht im Gleichgewicht in der Ursprungsposition. Zum Zeitpunkt t=0 wirkt eine neue Kraft [mm] \vec{F}(t) [/mm] auf den Gegenstand, welche die Komponenten [mm] F_{x}(t)=k_{1}+k_{2}y [/mm] und [mm] F_{y}(t)=k_{3}t [/mm] aufweist, mit [mm] k_{1}, k_{2} [/mm] und [mm] k_{3} [/mm] sind konstant. Errechnen Sie den Positionsvektor [mm] \vec{r} [/mm] und den Geschwindigkeitsvektor [mm] \vec{v} [/mm] als Funktion der Zeit.

Hey Leute,
kann mich mal kurz wer aufklären, ob das so richtig ist?

[mm] \vec{F}(t)=m \bruch{d\vec{v}}{dt} [/mm]

[mm] \vec{F}(t)=F_{x}(t)+ F_{y}(t)=k_{1}+k_{2}y [/mm] + [mm] k_{3}t [/mm]

Gleichsetzen:
[mm] k_{1}+k_{2}y [/mm] + [mm] k_{3}t=m \bruch{d\vec{v}}{dt} [/mm]
[mm] \gdw \integral_{a}^{b}{k_{1}+k_{2}y + k_{3}t dt}=\integral_{a}^{b}{m \bruch{d\vec{v}}{dt}dt} [/mm]  (meine das unbestimmte Integral)

[mm] \gdw k_{1}t+k_{2}yt [/mm] + [mm] 0,5k_{3}t^{2}=m \integral_{a}^{b}{\bruch{d\vec{v}}{dt}dt} [/mm]

[mm] \gdw k_{1}t+k_{2}yt [/mm] + [mm] 0,5k_{3}t^{2}=m\vec{v} [/mm]

[mm] \gdw \vec{v}=\bruch{k_{1}t+k_{2}yt + 0,5k_{3}t^{2}}{m} [/mm]

[mm] \gdw \vec{v}=\vec{F}(t) \bruch{t}{2m} [/mm]


Ist meine erste Aufgabe, wenn es darum geht, Kräfte als Vektoren zu behandeln, und mit den Differentialen bin ich auch noch nicht so vertraut, bitte Nachsicht haben :(

Gruß

Paivren

        
Bezug
Kraft als Vektor?: Antwort
Status: (Antwort) fertig Status 
Datum: 20:18 Mo 29.10.2012
Autor: Event_Horizon

Hallo!


> [mm]\vec{F}(t)=F_{x}(t)+ F_{y}(t)=k_{1}+k_{2}y[/mm] + [mm]k_{3}t[/mm]

geht nicht. Du kannst nicht einfach die Kräfte addieren, weil sie in verschiedene Richtungen zeigen. Gemeint ist:

[mm] \vec{F}(\vec{x},t)=\vektor{F_x(\vec{x}, t)\\ F_y(\vec{x}, t)}=\vektor{k_1+k_2*y \\k_3*t} [/mm]


Normalerweise wird so eine Rechnung etwas komplizierter, aber du hast Glück: die y-Komponente hängt nicht vom Ort ab. Du kannst also wie gehabt integrieren:

[mm] \int_0^\tau k_3*t\,dt=\int_0^\tau \frac{dv_y}{dt}\,dt=v_y(\tau) [/mm]

beachte, daß die untere Grenze 0 ist, da du ab dem Zeitpunkt 0 integrierst. Die obere Grenze habe ich mit  [mm] \tau [/mm] statt $t_$ eingesetzt, um den Unterschied klar zu machen. Ach, und da die Anfangsgeschwindigkeit 0 ist, ist auch die Integrationskonstante 0. Sonst hieße es [mm] v_y(\tau)+v_{y0} [/mm] .

Nachdem du auf diese Weise Geschwindigkeit und Ort in y-Richtung berechnet hast, kannst du den Ort für die Berechnung in x-Richtung einsetzen.

Bezug
                
Bezug
Kraft als Vektor?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:26 Mo 29.10.2012
Autor: Paivren

Hallo Event_Horizon, danke für die schnelle Antwort!

Ich dachte, die beiden Kräfte sind Teilkräfte und bilden zusammen die eigentliche Kraft, dabei sind es eigentlich nur die Vektorkomponenten, soweit so gut.

Was ich nicht ganz verstehe:
Wieso integrierst Du nur die y-Komponente? Und was hat es mit dem Y in der X-Komponente auf sich?

Gruß

Bezug
                        
Bezug
Kraft als Vektor?: Antwort
Status: (Antwort) fertig Status 
Datum: 21:23 Mo 29.10.2012
Autor: Event_Horizon

Hallo!

Natürlich mußt du beide Komponenten integrieren. Allerdings ist die x-Komponente der Kraft abhängig von der Position in y-Richtung. Währenddessen ist die y-Komponente ausschließlich von der Zeit abhängig. Das heißt, du kannst die Höhe (y) zu jedem Zeitpunkt schonmal wie beschrieben berechnen, um dann die seitliche Bewegung zu berechnen.

Dein Kraftfeld sieht nebenbei so aus:
[Dateianhang nicht öffentlich]

Dateianhänge:
Anhang Nr. 1 (Typ: gif) [nicht öffentlich]
Bezug
                                
Bezug
Kraft als Vektor?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:18 Mo 29.10.2012
Autor: Paivren

Ok, also zuerst den Y-Ort ausrechnen, damit ich mit der x-Komponente fortfahren kann.

m [mm] \integral_{0}^{k}{\bruch{d\vec{V_{y}}}{dt}dt} =\integral_{0}^{k}{k_{3}tdt} [/mm]

[mm] \gdw [/mm] m [mm] \vec{V_{y}} [/mm] = [mm] 0,5k_{3}t^{2} [/mm]

Wenn ich jetzt durch m teile, habe ich eine Funktion für V, richtig?

Jetzt ist die Frage: Muss ich das ganze jetzt nur mit t multiplizieren um zur Strecke zu kommen oder noch einmal nach t integrieren?

Gruß

Bezug
                                        
Bezug
Kraft als Vektor?: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:27 Mo 29.10.2012
Autor: Paivren

integrieren natürlich, weil V ja nicht konstant ist, gell!

Bezug
                                        
Bezug
Kraft als Vektor?: Antwort
Status: (Antwort) fertig Status 
Datum: 23:12 Mo 29.10.2012
Autor: Event_Horizon

Jap, nochmal integrieren!

Bezug
                                                
Bezug
Kraft als Vektor?: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:14 Do 01.11.2012
Autor: Paivren

Gut, habs auf die Kette gekriegt und den Zettel abgegeben, bin mal gespannt!

Ich danke dir!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mechanik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]