matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikKovarianz Normalverteilung
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Stochastik" - Kovarianz Normalverteilung
Kovarianz Normalverteilung < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kovarianz Normalverteilung: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 01:11 Do 20.12.2007
Autor: KarlOttoBerlin

Aufgabe
A und B sind standardnormalverteilt und unabhängig. Gesucht ist die Kovarianz von A und A + B.

Was ist A + B? Ist das eine simple Addition wegen der Unabhängigkeit oder muss ich die bedingte Funktion da noch reinbringen oder ist es
[mm] \bruch{1}{2Pi}exp -(a^2+b^2). [/mm]
Ich hoffe, Ihr könnt mir helfen... und tut mir leid wegen dem Zeitdruck ;-(

ch habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Kovarianz Normalverteilung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 02:07 Do 20.12.2007
Autor: Zorba

Du musst zuerst die Verteilung von A+B und die von A(A+B) berechnen, das muss in beiden Fällen nicht unbedingt die Standardnormalverteilung sein(ist aber möglich)
Dann nimmst du die Formel für die Kovarianz und setzt dort die Erwartungswerte der jeweiligen Verteilung ein.
Also: Kov(A,A+B)= E(A(A+B)) - E(A)E(A+B)
Hier nun die Erwartungswerte der jeweiligen Verteilung einsetzen.

Bezug
                
Bezug
Kovarianz Normalverteilung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:00 Do 20.12.2007
Autor: KarlOttoBerlin

Um ehrlich zu sein, die theoretische Vorgehensweise ist mir jetzt schon klar. Bei mir scheitert es leider an deinem ersten Satz: Wie kann ich denn A(A+B) und A+B berechnen?

Bezug
                        
Bezug
Kovarianz Normalverteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 10:28 Do 20.12.2007
Autor: Somebody


> Um ehrlich zu sein, die theoretische Vorgehensweise ist mir
> jetzt schon klar. Bei mir scheitert es leider an deinem
> ersten Satz: Wie kann ich denn A(A+B) und A+B berechnen?

Du musst ja nicht direkt diese Zufallsvariablen "berechnen", sondern etwa $E(A+B)$. Wegen der Linearität des Erwartungswertes ist $E(A+B)=E(A)+E(B)$.
Dann musst Du noch $E(A(A+B))$ berechnen. Dies ist gleich [mm] $E(A^2+AB)$. [/mm] Wegen der Unabhängigkeit von $A$ und $B$ ist aber [mm] $E(AB)=E(A)\cdot [/mm] E(B)$.
Und nun benutzt Du einfach, dass Du die Verteilung von $A$ und $B$ kennst, insbesondere also $E(A)$, $E(B)$ und [mm] $\mathrm{var}(A)=E(A^2)-E(A)^2$. [/mm]

Bezug
        
Bezug
Kovarianz Normalverteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 10:17 Do 20.12.2007
Autor: luis52

Moin KarlOttoBerlin,

[willkommenmr]

Nutze doch die alte Bauernregel: [mm] $\operatorname{Cov}[A,A+B]=\operatorname{Cov}[A,A]+\operatorname{Cov}[A,B]=\operatorname{Var}[A]=1$. [/mm]

vg Luis

Bezug
                
Bezug
Kovarianz Normalverteilung: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 11:01 Do 20.12.2007
Autor: KarlOttoBerlin

Vielen, vielen Dank für diese "Bauernregel". Hast du einen Link, wo sie hergeleitet wird... würde mich interessieren...
Beste Grüße

Bezug
                        
Bezug
Kovarianz Normalverteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 11:21 Do 20.12.2007
Autor: luis52


> Hast du einen
> Link, wo sie hergeleitet wird... würde mich
> interessieren...


Das kann man schnell linklos einsehen: Seien $X,Y,Z$ Zufallsvariablen mit
[mm] $\operatorname{E}[X]= \operatorname{E}[Y]= \operatorname{E}[Z]= [/mm] 0$ (Das ist keine Einschraenkung, wie man sich leicht
ueberlegt und trifft auf deinen Fall ohnehin zu). Dann ist

[mm] $\operatorname{Cov}[X,Y+Z]=\operatorname{E}[X(Y+Z)]= \operatorname{E}[XY+XZ]= \operatorname{E}[XY]+\operatorname{E}[XY]= \operatorname{Cov}[X,Y]+\operatorname{Cov}[X,Z]$. [/mm]

vg Luis

PS: Fuers Archiv: Sind $U,V,X,Y$ Zufallsvariablen und [mm] $a,b,c,d,e,f\in\IR$ [/mm] Zahlen, so ist

[mm] $\operatorname{Cov}[a+bU+cV,d+eX+fY]=be\operatorname{Cov}[U,X]+bf\operatorname{Cov}[U,Y]+ce\operatorname{Cov}[V,X]+cf\operatorname{Cov}[V,Y]$. [/mm]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]