matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikKovarianz, Exponentialv...
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Stochastik" - Kovarianz, Exponentialv...
Kovarianz, Exponentialv... < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kovarianz, Exponentialv...: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:41 Di 18.07.2006
Autor: alexchill

Aufgabe
a)
Gegeben seien zwei Zufallsvariablen X und Y mit V(X)=4, V(Y)=9 und Cov(Y)=6. Beide werden linear transformiert: X`=1+6X und Y`=4-3Y. Der Korrelationskoeffizient der transformierten Variablen beträgt?
--> Antwort -1

b)
Von den in einer Kneipe servieren Stangen Spargel ist im Schnitt jeder vierte holzig. Sie bestellen 6 Stangen Spargel. Wie Wahrscheinlich ist es, dass sie Pech haben, mindestens 4 holzige Spargen serviert zu bekommen?
Antwort --> 0,0376

c)
Wie groß ist die Wahrscheinlichkeit, daß man im Juni länger als 3 Tage auf einen Sonnetag warten muß, wenn es üblicherweise in diesem Monat 18 Tage gibt, an denen die Sonne nicht scheint? Gehen Sie von einer Exponentialverteilung der Wartezeit aus.
--> Antwort 0,301

Bei diesen 3 Fragen komm ich einfach nicht auf die Lösung, hab zwar schon viel rumprobiert aber will nicht so recht gelingen:

Zu a)
(Va+bX)=b²V(X) --> 6²*4=144  --> -3²*9=81

Korrelationskoeffizient=  [mm] \bruch{Cov(X,Y)}{ \wurzel{V(X) } * \wurzel{V(Y)}} [/mm]
Korrelationskoeffizient=  [mm] \bruch{Cov(X,Y)}{ 12 + 9} [/mm]

Was ich mit Cov(Y) anfangen soll versteh ich auch net so recht, weil es ja normalerweise Cov(X,Y) heisst, sonst wäre es ja keine Kovarianz :)

Zu b)
Mind. 4= 4,5,6
1/4*1/4*1/4*1/4*3/4*3/4+
1/4*1/4*1/4*1/4*1/4*3/4+
1/4*1/4*1/4*1/4*1/4*1/4=
0,00317

Zu c)

Erwartungswert= [mm] \mu= \bruch{1}{a} [/mm]
18= [mm] \bruch{1}{a} [/mm]
a= [mm] \bruch{1}{18} [/mm]

Verteilungsfunktion:1- [mm] e^{-ax}=1-e^{-1/18*3}=0,221 [/mm]



        
Bezug
Kovarianz, Exponentialv...: Antwort
Status: (Antwort) fertig Status 
Datum: 15:43 Di 18.07.2006
Autor: DirkG

Zu a) Das muss ein Schreibfehler in der Aufgabenstellung sein. Wenn du mit Cov(X,Y)=6 rechnest, kommt tatsächlich -1 heraus.

Zu b) Deine Rechnung ist falsch - wieso sollen bei 4 bzw. 5 holzigen Spargelstangen gerade nur die letzten 2 bzw. 1 gut sein? Nimm die Binomialverteilung, wie immer bei solchen Aufgaben.

Zu c) Der Juni hat 30 Tage, also ist der Anteil der Sonnentage gleich [mm] $\frac{30-18}{30}=0.4$. [/mm] Und jetzt denk nochmal drüber nach, was du da eigentlich rechnest.


Bezug
                
Bezug
Kovarianz, Exponentialv...: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:34 Di 18.07.2006
Autor: alexchill

Ok, herzlichsten Dank für die konkreten Antworten - haben mir wirklich sehr weitergeholfen.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]