matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikKovarianz, EX
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Stochastik" - Kovarianz, EX
Kovarianz, EX < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kovarianz, EX: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:55 Do 27.01.2011
Autor: Fry

Aufgabe
[Dateianhang nicht öffentlich]
[mm] (X_n)_n [/mm] Folge von i.i.d. Zufallsgrößen mit Werten in [-1,1] und [mm] E(X_1)=0 [/mm] und [mm] Y_n=\produkt_{i=1}^{n}X_i [/mm]
a) Zu zeigen: [mm] Var(Y_n) [/mm] existiert
b) Zu zeigen: [mm] Y_n [/mm] paarweise unkorreliert





Hallo zusammen,

zu a)
Stimmt folgende Argumentation?
[mm] X_1,...X_n [/mm] beschränkt => [mm] Y_n [/mm] beschränkt => [mm] Y^{2}_n [/mm] beschränkt=> [mm] E(Y^2) [/mm] existiert => Varianz existiert.

zu b) O.B.d.A sei n<m. Stimmt das dann so?
[mm]Cov(Y_n,Y_m)=E(\produkt_{i=1}^{n} X_i\produkt_{i=1}^{m}X_i)=E(\produkt_{i=1}^{n} X^{2}_i\produkt_{i=n+1}^{m}X_i)= \produkt_{i=1}^{n}E X^{2}_i\produkt_{i=n+1}^{m}EX_i=0[/mm]

Falls ja, wie kann man formal sauber den vorletzten Schritt begründen?
Also ich hab so angefangen:
[mm] $X_1,...,X_n$ [/mm] st.u => [mm] $X^{2}_1,...,X^{2}_n$ [/mm] st.u.

Nun ist zu zeigen, dass [mm] $\produkt_{i=1}^{n} X^{2}_i [/mm] und [mm] \produkt_{i=n+1}^{m}X_i$) [/mm] st.u. sind.
Dazu: [mm] X^{2}_i [/mm] ist unabhängig von [mm] X_j [/mm] für alle [mm] $i\not=j$ [/mm]
Daraus folgt die Behauptung,
denn sei 1 die konstante Zufallsvariable mit Wert 1.
Dann sind (X²_1,...,X²_n,1,...,1) und [mm] (X_{n+1},...,X_m) [/mm] st.u.
(Die Anzahl der Einsen ist = m-n)
Jetzt wende ich auf beide Vektoren die (stetige) Funktion
[mm] f(x_1,...,x_m)=x_1*x_2*...*x_m [/mm] an. Dabei bleibt die Unabhängigkeit erhalten.

Würde mich freuen, wenn ihr mir da helfen könntet!

Liebe Grüße
Fry


Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
        
Bezug
Kovarianz, EX: Antwort
Status: (Antwort) fertig Status 
Datum: 12:51 Do 27.01.2011
Autor: dormant


> [Dateianhang nicht öffentlich]
>  [mm](X_n)_n[/mm] Folge von i.i.d. Zufallsgrößen mit Werten in
> [-1,1] und [mm]E(X_1)=0[/mm] und [mm]Y_n=\produkt_{i=1}^{n}X_i[/mm]
>  a) Zu zeigen: [mm]Var(Y_n)[/mm] existiert
>  b) Zu zeigen: [mm]Y_n[/mm] paarweise unkorreliert
>  
>
>
>
> Hallo zusammen,
>  
> zu a)
>  Stimmt folgende Argumentation?
>  [mm]X_1,...X_n[/mm] beschränkt => [mm]Y_n[/mm] beschränkt => [mm]Y^{2}_n[/mm]

> beschränkt=> [mm]E(Y^2)[/mm] existiert => Varianz existiert.

Ja. Integrierbare Majorante, z.B. M:=2 const für [mm] X_1, [/mm] also ist [mm] \mathbb{V}[X_1]<\infty [/mm] und somit auch [mm] Y_n. [/mm] Hier musst du auch noch den Erwartungswert von [mm] Y_n [/mm] ausrechnen, da du ihn für b) brauchst.
  

> zu b) O.B.d.A sei n<m. Stimmt das dann so?
>  [mm]Cov(Y_n,Y_m)=E(\produkt_{i=1}^{n} X_i\produkt_{i=1}^{m}X_i)=E(\produkt_{i=1}^{n} X^{2}_i\produkt_{i=n+1}^{m}X_i)= \produkt_{i=1}^{n}E X^{2}_i\produkt_{i=n+1}^{m}EX_i=0[/mm]
>  
> Falls ja, wie kann man formal sauber den vorletzten Schritt
> begründen?

Mit der Unabhängigkeit. Wenn X, Y unabhängig, g messbare Funktion, so sind auch g(X), Y unabhängig. Im Vorletzten Schritt sollst du besser schreiben

... = [mm] \mathbb{V}[Y_n]\mathbb{E}[X_1]^{m-n} [/mm] = [mm] \mathbb{V}[Y_n]*0=0, [/mm]

wegen iid und aus [mm] \mathbb{V}[Y_n]<\infty. [/mm] Man sieht klar wie a) eine Vorbereitung für b) ist.

>  Also ich hab so angefangen:
>  [mm]X_1,...,X_n[/mm] st.u => [mm]X^{2}_1,...,X^{2}_n[/mm] st.u.  

> Nun ist zu zeigen, dass [mm]\produkt_{i=1}^{n} X^{2}_i und \produkt_{i=n+1}^{m}X_i[/mm])
> st.u. sind.
>  Dazu: [mm]X^{2}_i[/mm] ist unabhängig von [mm]X_j[/mm] für alle [mm]i\not=j[/mm]
>  Daraus folgt die Behauptung,
>  denn sei 1 die konstante Zufallsvariable mit Wert 1.
>  Dann sind (X²_1,...,X²_n,1,...,1) und [mm](X_{n+1},...,X_m)[/mm]
> st.u.
>  (Die Anzahl der Einsen ist = m-n)
>  Jetzt wende ich auf beide Vektoren die (stetige) Funktion
>  [mm]f(x_1,...,x_m)=x_1*x_2*...*x_m[/mm] an. Dabei bleibt die
> Unabhängigkeit erhalten.

Überflüssig.
  

> Würde mich freuen, wenn ihr mir da helfen könntet!
>  
> Liebe Grüße
>  Fry
>  

dormant

Bezug
                
Bezug
Kovarianz, EX: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 13:46 Do 27.01.2011
Autor: Fry


Hey dormant,

vielen Dank für deine Antwort.
Könntest du den zweiten Teil genauer an dem Beispiel ausführen.
Ich sehe nicht, dass das sofort klar ist. Diesen Satz hab ich ja auch übrigens selbst verwendet.

Danke nochmal!
LG
Fry


Bezug
                        
Bezug
Kovarianz, EX: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:04 Do 03.02.2011
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]