matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikKovarianz
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Stochastik" - Kovarianz
Kovarianz < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kovarianz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:26 Do 08.01.2015
Autor: Mathe-Lily

Aufgabe
Eine faire Münze wird dreimal geworfen. Die Zufallsgröße X gebe an, wie oft in den ersten beiden Würfen Kopf erscheint. Y gebe an, wie oft in den drei Würfen Kopf erscheint.
a) Berechnen Sie die Varianz von X und die Varianz von Y.
b) Sind X und Y unabhängig?
c) Bestimmen Sie die Kovarianz von X und Y-X.

Hallo!
a) und b) habe ich gelöst und bräuchte "nur" jemanden, der mal drüber schaut, ob das so stimmt.
Bei der c) hänge ich :-/

Sei [mm] X_i:=\begin{cases} 0, & \mbox{für Zahl} \\ 1, & \mbox{für Kopf } \end{cases} [/mm] und damit [mm] X:=\summe_{i=1}^2X_i [/mm] sowie [mm] Y:=\summe_{i=1}^3X_i [/mm]
a)
[mm] Var(X)=np(1-p)=2*\bruch{1}{2}*\bruch{1}{2}=\bruch{1}{2} [/mm]
[mm] Var(Y)=np(1-p)=3*\bruch{1}{2}*\bruch{1}{2}=\bruch{3}{4} [/mm]
(wegen Bernoulli-Verteilung)

b)
Gg.bsp.: P(A [mm] \cap [/mm] B)=P({X=2} [mm] \cap [/mm] {Y=0})=0 [mm] \not= \bruch{1}{32}=\bruch{1}{4}*\bruch{1}{8}=P({X=2})*P({Y=0})=P(A)*P(B) [/mm]

c) Kov(X,Y-X)=E(X*(Y-X))-E(X)*E(Y-X)
E(X)=1
[mm] E(Y-X)=\bruch{1}{2} [/mm]
wegen Bernoulli-Verteilung
und [mm] Y-X=\summe_{i=3}^3X_i =X_3 [/mm]

Aber bei E(X*(Y-X)) hänge ich. Kann mir hier jemand einen Tipp geben?
Das wäre großartig!
Grüßle, Lily

        
Bezug
Kovarianz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:40 Mo 12.01.2015
Autor: Mathe-Lily

Hallo!
Die Frage ist tatsächlich noch aktuell!
Es wäre super, wenn sich mir noch jemand annehmen würde ;-)
Grüßle, Lily

Bezug
        
Bezug
Kovarianz: Antwort
Status: (Antwort) fertig Status 
Datum: 21:28 Mo 12.01.2015
Autor: luis52


> c) Kov(X,Y-X)=E(X*(Y-X))-E(X)*E(Y-X)

[mm] $Cov[X,Y-X]=Cov[X_1+X_2,X_3]=Cov[X_1,X_3]-Cov[X_2,X_3]=0-0=0$ [/mm]

Bezug
                
Bezug
Kovarianz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:56 Di 13.01.2015
Autor: Mathe-Lily

Achso, stimmt! Vielen Dank! :-)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]