Kovariante Ableitung < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) überfällig | Datum: | 20:50 Fr 03.05.2013 | Autor: | valoo |
Aufgabe | Seien v und w die Geschwindigkeitsvektorfelder der Drehung der [mm] S^{2} [/mm] um y- bzw. z-Achse mit Winkelgeschwindigkeit 1. Berechnen Sie [mm] \nabla_{v}(w) [/mm] und [mm] \nabla_{w}(v) [/mm] |
Hallöle!
Das erste Problem, dass ich bei dieser Aufgabe habe, ist dass ich mir nicht einmal sicher bin, wie man überhaupt auf v oder w kommt. Ich habe die Drehmatrizen
[mm] Y=\pmat{ cos(t) & 0 & sin(t) \\ 0 & 1 & 0 \\ -sin(t) & 0 & cos(t) } [/mm]
[mm] Z=\pmat{ cos(t) & -sin(t) & 0 \\ sin(t) & cos(t) & 0 \\ 0 & 0 & 1} [/mm]
genommen und diese auf den Vektor [mm] \vektor{x \\ y \\ z} [/mm] angewendet und dann nach t differenziert und komme so auf
[mm] v= \vektor{cos(t) z - sin(t) x \\ 0 \\ -sin(t) z -cos(t) x} [/mm]
[mm] w = \vektor{ -cos(t) y -sin(t) z \\ -sin(t) y -cos(t) x \\ 0} [/mm]
Ist das soweit erstmal richtig?
Dann hab ich das in die Definition von diesem [mm] \nabla-Dingens [/mm] eingesetzt:
[mm] (\nabla_{v}(w)) ( \vektor{x \\ y \\ z} ) = \nabla_{(\vektor{x \\ y \\ z}, v(\vektor{x \\ y \\ z}))}w = \pi_{\vektor{x \\ y \\ z}}(\partial_{\vektor{x \\ y \\ z}, v(\vektor{x \\ y \\ z})}w)= \pi_{\vektor{x \\ y \\ z}}(w'(\vektor{x \\ y \\ z})v(\vektor{x \\ y \\ z}))=\pi_{\vektor{x \\ y \\ z}}\vektor{sin^{2}(t) x -cos(t) sin(t) z \\ cos(t) sin(t) x -cos^{2}(t) z \\ 0}[/mm]
Wobei [mm] \pi_{\vektor{x \\ y \\ z}} [/mm] die orthogonale Projektion auf den Tangentialraum an der Stelle [mm] \vektor{x \\ y \\ z} [/mm] ist. Und jetzt weiß ich nicht weiter...Wie projeziere ich das auf den Tangentialraum herunter, ohne diesen zu kennen? Ich meine, er ist zwar das orthogonale Komplement von [mm] \vektor{x \\ y \\ z}, [/mm] aber wie bestimme ich im Allgemeinen damit eine Basis des Tangentialraumes? Wenn ich eine solche hätte, könnte ich doch einfach das Skalarprodukt mit diesem Vektor mit beiden Basisvektoren bilden und dann mal die beiden Basisvektoren und das ganze addieren, oder?
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 21:20 Sa 11.05.2013 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|