matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenÖkonomische FunktionenKostenfunktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Ökonomische Funktionen" - Kostenfunktion
Kostenfunktion < Ökonomische Funktion < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Ökonomische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kostenfunktion: Problem
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 11:49 Sa 28.03.2009
Autor: freak900

1. Wenn ich mich die xoptimum ausrechnen will, brauch ich dazu immer KQuerstrich (Kostenfunktion/x)?  Und diese setz ich mit der ersten Ableitung 0?

2. Wenn ich mir für die Kostenfunktion, die Grenzkosten im Wendepunkt ausrechne, setzte ich die Zweite Ableitung gleich 0 und setzte dann den x-wert in K'(Kostenfunktion erste Ableitung) ein, stimmt das?

3. Ein Beispiel:

$ [mm] \overline{K} [/mm] $= 3 + [mm] \bruch{20}{x} [/mm] +0,01x, E=40x-2x²
ges. ist xc, und pc (c-cournotsche Punkt)

Wieso muss ich laut Lösung rechnen:

G= 40x-2x²-3x-20-0,01x²
Erste Ableitung 0 setzen und x ausrechnen,

wieso kann ich nicht die erste Ableitung von K 0 setzen und mir da das x ausrechnen?


DANKE!

        
Bezug
Kostenfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 14:01 Sa 28.03.2009
Autor: Analytiker

Hi freak,

> 1. Wenn ich mich die xoptimum ausrechnen will, brauch ich
> dazu immer KQuerstrich (Kostenfunktion/x)?  Und diese setz
> ich mit der ersten Ableitung 0?

Definiere bitte xoptimum ;-)! Meinst du die gewinnmaximale Stückmenge, oder was?

> 2. Wenn ich mir für die Kostenfunktion, die Grenzkosten im
> Wendepunkt ausrechne, setzte ich die Zweite Ableitung
> gleich 0 und setzte dann den x-wert in K'(Kostenfunktion
> erste Ableitung) ein, stimmt das?

Naja, was ist denn ein Wendepunkt... wohl die Nullstelle der zweiten Ableitung K''(x), oder?!

> 3. Ein Beispiel:
>  
> KStrich = 3 + [mm]\bruch{20}{x}[/mm] +0,01x, E=40x-2x²
>  ges. ist xc, und pc (c-cournotsche Punkt)
>  
> Wieso muss ich laut Lösung rechnen:
>  
> G= 40x-2x²-3x-20-0,01x²
>  Erste Ableitung 0 setzen und x ausrechnen,

Naja ist doch klar, du musst aus der Stückkistenfunktion wieder die Kostenfunktion machen indem du mit x multiplizierst, und dann mit E(x) verrechnen um G(x) zu erhalten. Dann normal ableiten und nullsetzen wie in der anderen Aufgabe auch.

> wieso kann ich nicht die erste Ableitung von K 0 setzen und
> mir da das x ausrechnen?

Bildet das den gleichen Sachverhalt ab?

Liebe Grüße
Analytiker
[lehrer]

PS: Gewöhn dir mal bitte an den Formeleditor zu benutzen, das lesen deiner Texte wird sonst auf Dauer anstrengend ;-)! Danke...

Bezug
                
Bezug
Kostenfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:26 Sa 28.03.2009
Autor: freak900


> Hi freak,
>  
> > 1. Wenn ich mich die xoptimum ausrechnen will, brauch ich
> > dazu immer KQuerstrich (Kostenfunktion/x)?  Und diese setz
> > ich mit der ersten Ableitung 0?
>  
> Definiere bitte xoptimum ;-)! Meinst du die gewinnmaximale
> Stückmenge, oder was?

ja, für die gewinnmaximale Stückmenge,
Angegben ist die Kostenfunktion:
man errechnet die Stückkostenfunktion
Von der errechnet man die erste Ableitung und setzt sie gleich 0.
Stimmts? (man kann nicht die Kostenfunktion erste Ableitung 0 setzen und
x gewinnmaximale rausrechnen oder?)

>
> > 2. Wenn ich mir für die Kostenfunktion, die Grenzkosten im
> > Wendepunkt ausrechne, setzte ich die Zweite Ableitung
> > gleich 0 und setzte dann den x-wert in K'(Kostenfunktion
> > erste Ableitung) ein, stimmt das?
>  
> Naja, was ist denn ein Wendepunkt... wohl die Nullstelle
> der zweiten Ableitung K''(x), oder?!
>  

Also so:

K = 0,002x³ -0,01x²+100x+50000
Der Wendpunkt ist gesucht.

K'= 0,006x²-0,02x+100
K''= 0,012x-0,02
O = 0,012x-0,02
0,02=0,012x
x=1,67   IST dieser Wert schon der Wendepunkt?

Denn es steht im Lösungsbuch dann zusätzlich:

Grenzkosten im Wendepunkt: K'(1,67) = 99,89, eingesezt in K''.


> > 3. Ein Beispiel:
>  >  
> > KStrich = 3 + [mm]\bruch{20}{x}[/mm] +0,01x, E=40x-2x²
>  >  ges. ist xc, und pc (c-cournotsche Punkt)
>  >  
> > Wieso muss ich laut Lösung rechnen:
>  >  
> > G= 40x-2x²-3x-20-0,01x²
>  >  Erste Ableitung 0 setzen und x ausrechnen,
>  
> Naja ist doch klar, du musst aus der Stückkistenfunktion
> wieder die Kostenfunktion machen indem du mit x
> multiplizierst, und dann mit E(x) verrechnen um G(x) zu
> erhalten. Dann normal ableiten und nullsetzen wie in der
> anderen Aufgabe auch.
>  
> > wieso kann ich nicht die erste Ableitung von K 0 setzen und
> > mir da das x ausrechnen?
>  
> Bildet das den gleichen Sachverhalt ab?


Hatte einen Fehler:

K (und nicht G) = 40x-2x²-3x-20-0,01x²
E = 40x-2x²

Wieso kann ich hier nicht K' 0 setzten und mir x herausheben.
Das müsste dann ja auch Maximal sein oder?

In der Lösung ist die Gewinnfunktion abgeleitet und 0 gesetzt.

DANKE


Bezug
                        
Bezug
Kostenfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 15:19 So 29.03.2009
Autor: M.Rex


> > Hi freak,
>  >  
> > > 1. Wenn ich mich die xoptimum ausrechnen will, brauch ich
> > > dazu immer KQuerstrich (Kostenfunktion/x)?  Und diese setz
> > > ich mit der ersten Ableitung 0?
>  >  
> > Definiere bitte xoptimum ;-)! Meinst du die gewinnmaximale
> > Stückmenge, oder was?
>
> ja, für die gewinnmaximale Stückmenge,
>  Angegben ist die Kostenfunktion:
>  man errechnet die Stückkostenfunktion
> Von der errechnet man die erste Ableitung und setzt sie
> gleich 0.
>  Stimmts? (man kann nicht die Kostenfunktion erste
> Ableitung 0 setzen und
> x gewinnmaximale rausrechnen oder?)

Nein. Wenn du das Gewinnmaximum bestimmen willst, musst du den Hochpunkt der Gewinnfunktion G(x):=E(x)-K(x) bestimmen.

>  
> >
> > > 2. Wenn ich mir für die Kostenfunktion, die Grenzkosten im
> > > Wendepunkt ausrechne, setzte ich die Zweite Ableitung
> > > gleich 0 und setzte dann den x-wert in K'(Kostenfunktion
> > > erste Ableitung) ein, stimmt das?
>  >  
> > Naja, was ist denn ein Wendepunkt... wohl die Nullstelle
> > der zweiten Ableitung K''(x), oder?!
>  >  
>
> Also so:
>
> K = 0,002x³ -0,01x²+100x+50000
>  Der Wendpunkt ist gesucht.
>  
> K'= 0,006x²-0,02x+100
>  K''= 0,012x-0,02
>  O = 0,012x-0,02
>  0,02=0,012x
>  x=1,67   IST dieser Wert schon der Wendepunkt?

Mach mal die Probe mit der hinreichenden Bedingung für Wendepunkte.


>  
> Denn es steht im Lösungsbuch dann zusätzlich:
>  
> Grenzkosten im Wendepunkt: K'(1,67) = 99,89, eingesezt in
> K''.
>  
>
> > > 3. Ein Beispiel:
>  >  >  
> > > KStrich = 3 + [mm]\bruch{20}{x}[/mm] +0,01x, E=40x-2x²
>  >  >  ges. ist xc, und pc (c-cournotsche Punkt)
>  >  >  
> > > Wieso muss ich laut Lösung rechnen:
>  >  >  
> > > G= 40x-2x²-3x-20-0,01x²
>  >  >  Erste Ableitung 0 setzen und x ausrechnen,
>  >  
> > Naja ist doch klar, du musst aus der Stückkistenfunktion
> > wieder die Kostenfunktion machen indem du mit x
> > multiplizierst, und dann mit E(x) verrechnen um G(x) zu
> > erhalten. Dann normal ableiten und nullsetzen wie in der
> > anderen Aufgabe auch.
>  >  
> > > wieso kann ich nicht die erste Ableitung von K 0 setzen und
> > > mir da das x ausrechnen?
>  >  
> > Bildet das den gleichen Sachverhalt ab?
>  
>
> Hatte einen Fehler:
>  
> K (und nicht G) = 40x-2x²-3x-20-0,01x²
>  E = 40x-2x²
>  
> Wieso kann ich hier nicht K' 0 setzten und mir x
> herausheben.
>  Das müsste dann ja auch Maximal sein oder?

Dann bekommst du das Extrema der Kostenfunktion, was sicherlich nicht das Gewinnmaximumist. Ausserdem willst du sicherlich nicht das MAXIMUM der KOSTENfunktion ermitteln. Was für eine Art des Extremums ist denn das errechnete, ein Minimum oder ein Maximum der Kostenfunktion. kennst du die hinreichende Möglichkeit für ein Minimum/Maximum?

>  
> In der Lösung ist die Gewinnfunktion abgeleitet und 0
> gesetzt.

Damit bekommt man die Extrema der Gewinnfunktion heraus. Welcher davon ist denn dann ein GewinnMAXIMA?

>
> DANKE
>  

Marius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Ökonomische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]