matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathe Klassen 8-10Kosten und Preistheorie
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Mathe Klassen 8-10" - Kosten und Preistheorie
Kosten und Preistheorie < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kosten und Preistheorie: Umkehraufgaben
Status: (Frage) beantwortet Status 
Datum: 17:59 Di 05.05.2009
Autor: itil

Heute bin ich lästig, tut mir leid...


Für einen Monopolbetrieb ergibt sich die Abhängigkeit der Gesamtkosten K von der Produtionsmenge x annähernd druch die Funktion der Form K(x) = $ [mm] ax^3 [/mm] $ + $ [mm] bx^2 [/mm] $ + cx + F wobei in der Kostenkehre von 6 ME Gesamtkosten von 672 GE und bei 10 Me Gesamtkosten von 800GE erzielt werden. Stillstandskosten betragen 300 GE

f(0) = 300 / F = 300
f''(6) = 0
f''(10) = 0
f(6)= 672
f(10)= 800

korrekt?





und eine weitere:

Für einen Monopolbetrieb ergibt sich die Abhängigkeit der Gesamtkosten K von der Produtionsmenge x annähernd druch die Funktion der Form k(x) = $ [mm] ax^2+bx+c [/mm] $
wobei bei einer Produktionsmenge von 4 ME die geringsten Druscnittsksoten von 12 GE/ME erreicht werden und bei der Produktion von 2 ME die Gesamtkosten von 28 GE erreich werden.

k(x) = $ [mm] ax^2+bx+c [/mm] $
k(4) = 12
k(2) = 28
k'(4) = 0
k(1) = 12

.. bezweifle schon jetz tdie Richtigkeit, aber wie gehts richitg?

        
Bezug
Kosten und Preistheorie: Gut
Status: (Antwort) fertig Status 
Datum: 20:37 Di 05.05.2009
Autor: Semimathematiker

Wenn du unter Kostenkehre den Punkt verstehst an dem der Preis für das nächste zu produzierende Stück am größten bzw am kleinsten ist, ja.

Stillstandkosten sind die Kosten die entstehen wenn die Maschine nicht läuft. Also K(0)=300. Stimmt also auch.

Und die anderen X-Werte hast du auch richtig.

2. Aufgabe

bei einer Produktionsmenge von 4 ME die geringsten Druscnittsksoten von 12 GE/ME
Durchschnittskosten bedeutet, dass die entstandenen Kosten an der Stelle [mm] x_{0} [/mm] auf die gesamten produzierten Stück heruntergebrochen werden.

$ [mm] k(x)=(ax^2+bx+c)/x [/mm] $

Du darfst das nicht mit den geringsten K/x, also den geringsten Kosten pro Stück verwechseln. Lehrer bauen da gern mal was ein.
Die geringsten k(x), also der Punkt auf der x-Achse, bei dem k(x) am geringsten ist, berechnest du natürlich mit der k´(x). Die nähern sich natürlich unendlich an kv(x) an. Also k(x) - y-Achsenabschnitt.

Also:
k(x) = $ [mm] ax^2+bx+c [/mm] $
[K(x)]/x = $ [mm] (ax^2+bx+c)/x [/mm] $
k(4) = 12
k(2) = 28

Jetzt müsste es passen.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]