matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSonstigesKosten- u. Erlösfunktionen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Sonstiges" - Kosten- u. Erlösfunktionen
Kosten- u. Erlösfunktionen < Sonstiges < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kosten- u. Erlösfunktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:51 Mi 24.01.2007
Autor: lutzi_123

Aufgabe
Für einen Monopolisten gelten folgende Kosten- und Erlösfunktionen
K: K(x)=5x³-28,75x²+62,5x+1200
E: E(x)=-90x²+900x
Die Produktion kann maximal auf 8ME ausgedehnt werden.


1. Die Produkte werden zu einem Preis von 630GE je Mengeneinheit angeboten. Berechnen sie den Gesamtgewinn und den Stückgewinn.

2. Zu welchem Preis müssen die Produkte auf dem Markt angeboten werden, um maximalen Gewinn zu erzielen?

3.Welcher Preis muss unterschritten werden, um in den Bereich des Gewinns zu kommen?
(Hinweis: Verwenden sie zur Berechnung der Gewinnschwellenmenge das Newton-Verfahren)

Eigentlich komm' ich in Mathe immer recht gut mit. Bzw. "kam" ...jetzt konnt ich 2 Wochen nicht zur Schule und nun seh gar nicht mehr durch.
Das nur mal vorab ;)

Ich kann nichtmal eine exakte Frage zu den einzelnen Aufgabenstellungen formulieren, weil ich wirklich gar keine Ahnung hab, wie ich rangehen soll ..

Wäre nett, wenn mir jemand bei der Aufgabe etwas unter die Arme greifen könnte.
(am Rechnen selbst hapert's nicht .. eher an den Ansätzen)


Ich danke schonmal im voraus
(Und jetzt setz ich mich erstmal wieder an die Aufgabe ..vielleicht platzt der Knoten ja doch noch :( .... )


Achso.. fast vergessen: Frage habe ich nicht nur hier gestellt.


[EDIT]

Also die Gewinnfunktion hatt ich dann mal zusammengekratzt

G(x)=-90x²+900x - (5x³-28,75x²+62,5x+1200)
G(x)=-5x³-61,25x²+837,5x-1200

Nur weiß ich leider nicht was ich nun damit anstellen soll :-?


        
Bezug
Kosten- u. Erlösfunktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:20 Do 25.01.2007
Autor: chrisno


> Für einen Monopolisten gelten folgende Kosten- und
> Erlösfunktionen
>  K: K(x)=5x³-28,75x²+62,5x+1200
>  E: E(x)=-90x²+900x
>  Die Produktion kann maximal auf 8ME ausgedehnt werden.
>  
>
> 1. Die Produkte werden zu einem Preis von 630GE je
> Mengeneinheit angeboten. Berechnen sie den Gesamtgewinn und
> den Stückgewinn.
> Eigentlich komm' ich in Mathe immer recht gut mit. Bzw.
> Also die Gewinnfunktion hatt ich dann mal zusammengekratzt
>  
> G(x)=-90x²+900x - (5x³-28,75x²+62,5x+1200)
>  G(x)=-5x³-61,25x²+837,5x-1200

Gewinn = Erlös minus Kosten... ok

Der Stückpreis (naja, Preis pro Mengeneinheit) beträgt
630 GE. Bei x verkauften Stück beträgt der Erlös also x * 630 GE. Da Du auch E(x) hast, kannst Du so die verkaufte Menge x bestimmen.
Mit G(x) erhältst Du den Gesamtgewinn. Durch x teilen ergibt den Gewinn pro Stück.

> 2. Zu welchem Preis müssen die Produkte auf dem Markt
> angeboten werden, um maximalen Gewinn zu erzielen?
>  

Maximum der Gewinnfunktioin bestimmen. Liegt [mm] $x_{max}$ [/mm]
noch im Definitionsbereich < 8 ME? Dann ist das Maximum wahrscheinlich bei 8 ME.
Je nachdem hast Du dann das x und kannst E(x) berechnen.
Einzelpreis: E(x)/x

> 3.Welcher Preis muss unterschritten werden, um in den
> Bereich des Gewinns zu kommen?

Nullstelle der Gewinnfunktion.... dann Preis zu dem [mm] x_0. [/mm]

>  (Hinweis: Verwenden sie zur Berechnung der
> Gewinnschwellenmenge das Newton-Verfahren)
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]