matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenTopologie und GeometrieKosinussatz in reell. eukl. Eb
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Topologie und Geometrie" - Kosinussatz in reell. eukl. Eb
Kosinussatz in reell. eukl. Eb < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kosinussatz in reell. eukl. Eb: Wo ist der Fehler im Beweis?
Status: (Frage) überfällig Status 
Datum: 05:19 So 25.05.2008
Autor: BlizzardBW

Aufgabe
Finden Sie den Fehler in folgendem "Beweis"!
---------------------------------------------------------

Seien a,b,c,d [mm] \in [/mm] E paarweise verschieden, wobei [mm] E:=(\IR^2,<.,.>) [/mm] die reelle euklidische Ebene.

Es sei weiterhin [mm] \alpha [/mm] der Winkel zwischen b-a,d-a mit [mm] \alpha=\bruch{1}{2}\pi, \beta [/mm] der Winkel zwischen c-b,a-b und [mm] \beta>\bruch{1}{2}\pi [/mm] und |a-d|=|b-c|.

Sei e der Mittelpunkt von a,b und f der Mittelpunkt von c,d. Weiter bezeichnen wir den Schnittpunkt der beiden Mittelsenkrechten [mm] M_{a,b} [/mm] und [mm] M_{c,d} [/mm] mit m.

e v m ist Mittelsenkrechte zu a,b [mm] \rightarrow [/mm] |a-m|=|b-m|
f  v m ist Mittelsenkrechte zu c,d [mm] \rightarrow [/mm] |d-m|=|c-m|

Und da |a-d|=|b-c| folgt aus dem Cosinussatz, dass der Winkel zwischen m-a,d-a = dem Winkel zwischen c-b,m-b

Da |a-e|=|b-e| und |a-m|=|b-m| folgt wiederum aus dem Cosinussatz, dass der Winkel zwischen m-a,e-a = Winkel e-b,m-b

Also folgt [mm] \alpha [/mm] = (Winkel m-a,d-a)   - (Winkel m-a,e-a) = (Winkel c-b,m-b) - (Winkel e-b,m-b) = [mm] \beta [/mm]  

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Und hoffe daher, dass mir hier jemand weiterhelfen kann. Sitze schon seit Tagen hierüber und komme irgendwie nicht weiter.

Ich denke, ich konnte es soweit eingrenzen, dass ich meine, dass der Fehler wahrscheinlich irgendwo bei der Winkeladdition am Ende bzw. in der Art des Kosinussatzes liegt. Als einen (mir leider nicht viel helfenden Tipp) sagte mir jemand, es käme bei Winkeladdition bzw. Winkeln auf die Richtung an, in der ein Winkel definiert ist. Hab aber keine Ahnung, was das genau heißen soll, denn ich dachte bisher Winkel a,b = Winkel b,a?

Ich wäre echt für einen zeitnahen Tipp dankbar, denn ich muss die Aufgabe bis kommenden Montag (also morgen) lösen. Bin echt etwas frustriert und vermute, ich übersehe wahrscheinlich was relativ einfaches.

Freue mich über jede Hilfe. Wahrscheinlich gibt's hier einige, die das sofort sehen und daher die Frage schnell beantworten können, denke ich.

        
Bezug
Kosinussatz in reell. eukl. Eb: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 05:20 Di 27.05.2008
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]