matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStochastikKorrekturfaktor 0.5
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Stochastik" - Korrekturfaktor 0.5
Korrekturfaktor 0.5 < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Korrekturfaktor 0.5: Eine Frage
Status: (Frage) beantwortet Status 
Datum: 15:07 Do 01.03.2007
Autor: yildi

moin moin!

ich habe eine frage, und zwar benutzen wir oft die bäherungsformel von moivre laplace (http://de.wikipedia.org/wiki/Satz_von_Moivre-Laplace). dabei verstehe ich nicht wieso wir manchmal in den zähler des bruches einen korrekturfaktor von 0.5 addieren bzw subtrahieren. ich weiss, das hat irgendwas mit diesen balken in der verteilung usw. zu tun.. aber kann mir vielleicht jemand kurz erklären wann man diesen summanden einbaut und wann nicht ?

vielen dank!

        
Bezug
Korrekturfaktor 0.5: Antwort
Status: (Antwort) fertig Status 
Datum: 15:24 Do 01.03.2007
Autor: Kroni

Hi,

zunächst eine Korrektur: Die 0,5 ist kein KorrekturFAKTOR sondern ein Summand.

Ja, ihr müsst die Formel ja irgendwann mal mit HIlfe eines Histogramms hergeleitet haben, da sieht man dann, dass teilweise noch die äußeren Balken außerhalb der Näherung durch die Glockenkurve liegen.
Das veranlasst dich dazu, die 0,5 drauf zuaddieren oder abzuziehen.

Nun gibt es diese Formel:
[mm] P(X<=k)=Phi(\bruch{k-\mu +0,5}{Sigma}) [/mm]
Es gibt auch noch die andere, wo du einmal +0,5 und einmal -0,5 rechnest, wo du dann sowas hast wie
P(a<=X<=b) oder so etwas, aber wenn du dir die obere Formel merkst, kannst du P(a<=X<=b) in eine Differenzen von P(X<=b)-P(X<=a-1) ausdrücken, so dass du dir nur die obere Formel merken musst.

Gut, wann lässt man das Korrekturglied weg?
Einmal lässt man es weg, wenn man über die sog. Sigma-Umgebung redet, dann lässt man es einfach weg.
Das andere Mal, wenn du über die sog. Normalverteilung spirchst: Diese kannst du ebenfalls mit HIlfe der oben genannten Formel berechnen, aber man lässt dann einfach die 0,5 weg.

Ich hoffe, ich konnte dir ein wenig weiterhelfen.

SLaín,

Kroni

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]