matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferentiationKorrektur: Ableitung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Differentiation" - Korrektur: Ableitung
Korrektur: Ableitung < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Korrektur: Ableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:05 So 07.03.2010
Autor: Rugosh

Aufgabe
Sei f(x) = [mm] arcsin(x)+arsin(\sqrt{1-x^2}). [/mm]
Berechnen sie die erste Ableitung von f(x) für x [mm] \in [/mm] ]-1,1[ und x [mm] \not= [/mm] 0, und vereinfacehn Sie ihr Ergebnis.

Hi,
ich habe diese Aufageb gelöst und wollte ihr mal nach einer Korrektur dafür nachfragen.
f(x) = [mm] arcsin(x)+arsin(\sqrt{1-x^2}) [/mm]
f'(x)= [mm] \bruch{1}{\sqrt{1-x^2}} [/mm] + [mm] \bruch{1}{\sqrt{1-(1-x^2)}} [/mm] * [mm] \bruch{1}{2*\sqrt{(1-x^2)}} [/mm]
  = [mm] \bruch{1}{2*\sqrt{x^2}*\sqrt{1-x^2}} [/mm]
  = [mm] \bruch{1}{2x\sqrt{1-x^2}} [/mm]

Vielen Dank schon mal für die Korrektur.




        
Bezug
Korrektur: Ableitung: innerste Ableitung
Status: (Antwort) fertig Status 
Datum: 17:07 So 07.03.2010
Autor: Loddar

Hallo Rugosh!


> f(x) = [mm]arcsin(x)+arsin(\sqrt{1-x^2})[/mm]
> f'(x)= [mm]\bruch{1}{\sqrt{1-x^2}}[/mm] +  [mm]\bruch{1}{\sqrt{1-(1-x^2)}}[/mm] * [mm]\bruch{1}{2*\sqrt{(1-x^2)}}[/mm]

Hier stimmt die "innerste" Ableitung des Terms [mm] $\wurzel{1-x^2}$ [/mm] nicht bzw. fehlt die Ableitung von [mm] $1-x^2$ [/mm] .


Gruß
Loddar


Bezug
                
Bezug
Korrektur: Ableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:13 So 07.03.2010
Autor: Rugosh

Also müsste es eher so sein:
$f(x) = arcsin(x) + [mm] arsin(\sqrt{1-x^2}) [/mm] $
$f'(x)= [mm] \bruch{1}{\sqrt{1-x^2}} [/mm] + [mm] \bruch{1}{\sqrt{1-(1-x^2)}} [/mm] * [mm] \bruch{1}{2\cdot{}\sqrt{(1-x^2)}} [/mm] * (-2x) $
  $= [mm] \bruch{1}{\sqrt{1-x^2}} -\bruch{2x}{2x\sqrt{1-x^2}}$ [/mm]
  $= [mm] \bruch{1}{\sqrt{1-x^2}} -\bruch{1}{\sqrt{1-x^2}}$ [/mm]
  $= 0$
Das sieht für mich mit dem 0 als Ableitungsergebnis irgendwie falsch aus, zumal da vereinfachen steht.


Bezug
                        
Bezug
Korrektur: Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 18:38 So 07.03.2010
Autor: MathePower

Hallo Rugosh,

> Also müsste es eher so sein:
>  [mm]f(x) = arcsin(x) + arsin(\sqrt{1-x^2})[/mm]
>  [mm]f'(x)= \bruch{1}{\sqrt{1-x^2}} + \bruch{1}{\sqrt{1-(1-x^2)}} * \bruch{1}{2\cdot{}\sqrt{(1-x^2)}} * (-2x)[/mm]
>  
>   [mm]= \bruch{1}{\sqrt{1-x^2}} -\bruch{2x}{2x\sqrt{1-x^2}}[/mm]
>    
> [mm]= \bruch{1}{\sqrt{1-x^2}} -\bruch{1}{\sqrt{1-x^2}}[/mm]
>    [mm]= 0[/mm]
>  
> Das sieht für mich mit dem 0 als Ableitungsergebnis
> irgendwie falsch aus, zumal da vereinfachen steht.
>  


Für x > 0 ist das richtig. [ok]


Gruss
MathePower

Bezug
                                
Bezug
Korrektur: Ableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:55 So 07.03.2010
Autor: Rugosh

Hi,
danke für die Antworten, aber mir ist da immer noch was nicht ganz klar.

> Für x > 0 ist das richtig. [ok]

Und wie ist das mit einem x < 0?
Da hier ja $ x [mm] \in [/mm] ]-1,1[ $

Mfg Rugosh


Bezug
                                        
Bezug
Korrektur: Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 19:03 So 07.03.2010
Autor: MathePower

Hallo Rugosh,


> Hi,
>  danke für die Antworten, aber mir ist da immer noch was
> nicht ganz klar.
>  
> > Für x > 0 ist das richtig. [ok]
>  Und wie ist das mit einem x < 0?
>  Da hier ja [mm]x \in ]-1,1[[/mm]


Per Definition ist

[mm]\wurzel{x^{2}}=\vmat{x}[/mm]

Demnach gilt für x < 0:

[mm]\wurzel{x^{2}}=\vmat{x}=-x[/mm]


>  
> Mfg Rugosh
>  


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]