matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMechanikKoordinatentransformation
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Mechanik" - Koordinatentransformation
Koordinatentransformation < Mechanik < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mechanik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Koordinatentransformation: kartesische in Kugelkoordinat
Status: (Frage) beantwortet Status 
Datum: 13:42 Di 17.01.2012
Autor: murmel

Aufgabe
Gegeben sei das Potenzial
[mm]V \left(x, y, z\right) = \bruch{V_0}{a^3}\,x^2\,y\,z [/mm]


a) Geben Sie das zugehörige Kraftfeld an!
b) Rechnen Sie V und F in Kugelkoordinaten um!

HINWEIS: Für [mm] $\vec [/mm] F$ heißt das, schreiben Sie [mm] $\vec [/mm] F$ als [mm] $F_r\,\vec{e}_r [/mm] + [mm] F_{\phi}\, \vec{e}_{\phi} [/mm] + [mm] F_{\theta}\,\vec{e}_\theta$ [/mm] und bestimmen Sie [mm] $F_r$, $F_{\phi}$ [/mm] und [mm] $F_{\theta}$. [/mm]




Hallo ihr fleißigen Helfer,


könnte mir bitte jemand -der Zeit und Muse hat- mitteilen ob das Kraftfeld in Kugelkoordinaten richtig ist/ ob die Herangehensweise stimmt?

Für eure Hilfe bin ich euch dankbar!



Hier nun der Lösungsansatz:

-----------Das Potenzial------------

Mein Ansatz für [mm] $V(\varrho, \varphi, \vartheta)$ [/mm] in  Kugelkoordinaten:

[mm] V(\varrho, \varphi, \vartheta) = \bruch{V_0\, \varrho^4 \sin^3 \vartheta\,\cos^2 \varphi\,\sin \varphi \, \cos \vartheta}{a^3} [/mm]


-----------Das Kraftfeld-----------

Ansatz für das Kraftfeld in kartesischen Koordinaten, mit [mm] $\vec{\nabla}\,V [/mm] = [mm] \vec [/mm] F$:

[mm]\vec F = \bruch{V_0}{a^3}\,\left( 2\,x\,y\,z, x^2\,z, x^2\,y \right)[/mm]


-durch Kugelkoordinaten ersetzen:


[mm]\vec F = \bruch{V_0}{a^3}\,\begin{pmatrix} 2\,\left(r\,\sin\theta\,\cos\phi\right)\,\left(r\,\sin\theta\,\sin\phi\right)\,\left( r\,\cos\theta \right) \\ \left( r^2\,\sin^2\theta\,\cos^2\phi \right)\,\left( r\,\cos\theta \right) \phantom{Platzhalter} \\ \left( r^2\,\sin^2\theta\,\cos^2\phi \right)\,\left( r\,sin\theta\,\sin\phi \right) \phantom{Platter} \end{pmatrix}[/mm]

-----Transformationsgleichungen----

Als "Transformationsgleichungen" (als Skalarprodukt) hat der Dozierende folgende Gleichungen verwendet:

[mm] F_r = \vec F \circ \vec{e}_r; \quad F_{\phi} = \vec F \circ \vec{e}_{\phi}; \quad F_{\theta} = \vec F \circ \vec{e}_{\theta} [/mm]


In vektorieller Schreibweise sind die Einheitsvektoren gegeben:


[mm]\vec{e}_r = \begin{pmatrix} \sin\theta\,\cos\phi \\ \sin\theta\,\sin\phi\\ \cos\theta \phantom{--\;\,\,}\end{pmatrix}; \qquad \vec{e}_{\phi} = \begin{pmatrix} -\sin\phi \\ \phantom{\;\,\,} \cos\phi \\ 0 \end{pmatrix}; \qquad \vec{e}_{\theta} = \begin{pmatrix} \cos\theta\,\cos\phi \\ \cos\theta\,\sin\phi \\ - \sin\theta \phantom{-\;\,\,} \end{pmatrix}[/mm]


-------------Finale----------------

entsprechend ersetzen:



[mm]F_r = \bruch{V_0}{a^3}\,\begin{pmatrix} 2\,\left(r\,\sin\theta\,\cos\phi\right)\,\left(r\,\sin\theta\,\sin\phi\right)\,\left( r\,\cos\theta \right) \\ \left( r^2\,\sin^2\theta\,\cos^2\phi \right)\,\left( r\,\cos\theta \right) \phantom{Platzhalter} \\ \left( r^2\,\sin^2\theta\,\cos^2\phi \right)\,\left( r\,sin\theta\,\sin\phi \right) \phantom{Platter} \end{pmatrix} \circ \begin{pmatrix} \sin\theta\,\cos\phi \\ \sin\theta\,\sin\phi\\ \cos\theta \phantom{--\;\,\,}\end{pmatrix};\qquad F_{\theta} = \bruch{V_0}{a^3}\,\begin{pmatrix} 2\,\left(r\,\sin\theta\,\cos\phi\right)\,\left(r\,\sin\theta\,\sin\phi\right)\,\left( r\,\cos\theta \right) \\ \left( r^2\,\sin^2\theta\,\cos^2\phi \right)\,\left( r\,\cos\theta \right) \phantom{Platzhalter} \\ \left( r^2\,\sin^2\theta\,\cos^2\phi \right)\,\left( r\,sin\theta\,\sin\phi \right) \phantom{Platter} \end{pmatrix} \circ \begin{pmatrix} \cos\theta\,\cos\phi \\ \cos\theta\,\sin\phi \\ - \sin\theta \phantom{-\;\,\,} \end{pmatrix}; \qquad F_{\phi} = \bruch{V_0}{a^3}\,\begin{pmatrix} 2\,\left(r\,\sin\theta\,\cos\phi\right)\,\left(r\,\sin\theta\,\sin\phi\right)\,\left( r\,\cos\theta \right)\\ \left( r^2\,\sin^2\theta\,\cos^2\phi \right)\,\left( r\,\cos\theta \right) \phantom{Platzhalter} \\ \left( r^2\,\sin^2\theta\,\cos^2\phi \right)\,\left( r\,sin\theta\,\sin\phi \right) \phantom{Platter} \end{pmatrix} \circ \begin{pmatrix} -\sin\phi \\ \phantom{\;\,\,} \cos\phi \\ 0 \end{pmatrix};[/mm]

... und dann halt ausrechnen.


        
Bezug
Koordinatentransformation: Trivial?
Status: (Frage) beantwortet Status 
Datum: 09:40 Mi 18.01.2012
Autor: murmel

Ist die Frage so dämlich?

Bezug
                
Bezug
Koordinatentransformation: Antwort
Status: (Antwort) fertig Status 
Datum: 09:48 Mi 18.01.2012
Autor: chrisno

Nein. Ich vermisse das Minuszeichen beim Zusammenhang zwischen Kraft und Potential. Die Rechnungen scheinen mir richtig zu sein. Nur den letzten Schritt, die Angabe der Kraft in Kugelkoordinaten, kann ich nicht beurteilen, da ich mir das erst selbst wieder aneignen müsste.

Bezug
                        
Bezug
Koordinatentransformation: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:57 Mi 18.01.2012
Autor: murmel

@chrisno

Oh ja, richtig, dass habe ich wohl vergessen! Danke für den Hinweis.

@notinX

Danke, dann kann die Klausur ja kommen... .


Bezug
        
Bezug
Koordinatentransformation: Antwort
Status: (Antwort) fertig Status 
Datum: 10:24 Mi 18.01.2012
Autor: notinX

Hallo,

> Gegeben sei das Potenzial
> [mm]V \left(x, y, z\right) = \bruch{V_0}{a^3}\,x^2\,y\,z [/mm]
>  
>
> a) Geben Sie das zugehörige Kraftfeld an!
>  b) Rechnen Sie V und F in Kugelkoordinaten um!
>  
> HINWEIS: Für [mm]\vec F[/mm] heißt das, schreiben Sie [mm]\vec F[/mm] als
> [mm]F_r\,\vec{e}_r + F_{\phi}\, \vec{e}_{\phi} + F_{\theta}\,\vec{e}_\theta[/mm]
> und bestimmen Sie [mm]F_r[/mm], [mm]F_{\phi}[/mm] und [mm]F_{\theta}[/mm].
>  
>
>
> Hallo ihr fleißigen Helfer,
>
>
> könnte mir bitte jemand -der Zeit und Muse hat- mitteilen
> ob das Kraftfeld in Kugelkoordinaten richtig ist/ ob die
> Herangehensweise stimmt?
>
> Für eure Hilfe bin ich euch dankbar!
>  
>
> Hier nun der Lösungsansatz:
>  
> -----------Das Potenzial------------
>  
> Mein Ansatz für [mm]V(\varrho, \varphi, \vartheta)[/mm] in  
> Kugelkoordinaten:
>  
> [mm]V(\varrho, \varphi, \vartheta) = \bruch{V_0\, \varrho^4 \sin^3 \vartheta\,\cos^2 \varphi\,\sin \varphi \, \cos \vartheta}{a^3}[/mm]
>
>
> -----------Das Kraftfeld-----------
>  
> Ansatz für das Kraftfeld in kartesischen Koordinaten, mit
> [mm]\vec{\nabla}\,V = \vec F[/mm]:
>  
> [mm]\vec F = \bruch{V_0}{a^3}\,\left( 2\,x\,y\,z, x^2\,z, x^2\,y \right)[/mm]
>  
>
> -durch Kugelkoordinaten ersetzen:
>  
>
> [mm]\vec F = \bruch{V_0}{a^3}\,\begin{pmatrix} 2\,\left(r\,\sin\theta\,\cos\phi\right)\,\left(r\,\sin\theta\,\sin\phi\right)\,\left( r\,\cos\theta \right) \\ \left( r^2\,\sin^2\theta\,\cos^2\phi \right)\,\left( r\,\cos\theta \right) \phantom{Platzhalter} \\ \left( r^2\,\sin^2\theta\,\cos^2\phi \right)\,\left( r\,sin\theta\,\sin\phi \right) \phantom{Platter} \end{pmatrix}[/mm]
>  
> -----Transformationsgleichungen----
>  
> Als "Transformationsgleichungen" (als Skalarprodukt) hat
> der Dozierende folgende Gleichungen verwendet:
>  
> [mm]F_r = \vec F \circ \vec{e}_r; \quad F_{\phi} = \vec F \circ \vec{e}_{\phi}; \quad F_{\theta} = \vec F \circ \vec{e}_{\theta}[/mm]
>  
>
> In vektorieller Schreibweise sind die Einheitsvektoren
> gegeben:
>  
>
> [mm]\vec{e}_r = \begin{pmatrix} \sin\theta\,\cos\phi \\ \sin\theta\,\sin\phi\\ \cos\theta \phantom{--\;\,\,}\end{pmatrix}; \qquad \vec{e}_{\phi} = \begin{pmatrix} -\sin\phi \\ \phantom{\;\,\,} \cos\phi \\ 0 \end{pmatrix}; \qquad \vec{e}_{\theta} = \begin{pmatrix} \cos\theta\,\cos\phi \\ \cos\theta\,\sin\phi \\ - \sin\theta \phantom{-\;\,\,} \end{pmatrix}[/mm]
>  
>
> -------------Finale----------------
>  
> entsprechend ersetzen:
>  
>
>
> [mm]F_r = \bruch{V_0}{a^3}\,\begin{pmatrix} 2\,\left(r\,\sin\theta\,\cos\phi\right)\,\left(r\,\sin\theta\,\sin\phi\right)\,\left( r\,\cos\theta \right) \\ \left( r^2\,\sin^2\theta\,\cos^2\phi \right)\,\left( r\,\cos\theta \right) \phantom{Platzhalter} \\ \left( r^2\,\sin^2\theta\,\cos^2\phi \right)\,\left( r\,sin\theta\,\sin\phi \right) \phantom{Platter} \end{pmatrix} \circ \begin{pmatrix} \sin\theta\,\cos\phi \\ \sin\theta\,\sin\phi\\ \cos\theta \phantom{--\;\,\,}\end{pmatrix};\qquad F_{\theta} = \bruch{V_0}{a^3}\,\begin{pmatrix} 2\,\left(r\,\sin\theta\,\cos\phi\right)\,\left(r\,\sin\theta\,\sin\phi\right)\,\left( r\,\cos\theta \right) \\ \left( r^2\,\sin^2\theta\,\cos^2\phi \right)\,\left( r\,\cos\theta \right) \phantom{Platzhalter} \\ \left( r^2\,\sin^2\theta\,\cos^2\phi \right)\,\left( r\,sin\theta\,\sin\phi \right) \phantom{Platter} \end{pmatrix} \circ \begin{pmatrix} \cos\theta\,\cos\phi \\ \cos\theta\,\sin\phi \\ - \sin\theta \phantom{-\;\,\,} \end{pmatrix}; \qquad F_{\phi} = \bruch{V_0}{a^3}\,\begin{pmatrix} 2\,\left(r\,\sin\theta\,\cos\phi\right)\,\left(r\,\sin\theta\,\sin\phi\right)\,\left( r\,\cos\theta \right)\\ \left( r^2\,\sin^2\theta\,\cos^2\phi \right)\,\left( r\,\cos\theta \right) \phantom{Platzhalter} \\ \left( r^2\,\sin^2\theta\,\cos^2\phi \right)\,\left( r\,sin\theta\,\sin\phi \right) \phantom{Platter} \end{pmatrix} \circ \begin{pmatrix} -\sin\phi \\ \phantom{\;\,\,} \cos\phi \\ 0 \end{pmatrix};[/mm]
>  
> ... und dann halt ausrechnen.
>  

sieht gut aus.

Gruß,

notinX

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mechanik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]