matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-SonstigesKoordinatensysteme
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Analysis-Sonstiges" - Koordinatensysteme
Koordinatensysteme < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Koordinatensysteme: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:43 Mo 28.11.2011
Autor: dodo4ever

Hallo Matheraum :)

Ich wollte mal fragen, ob es grundsätzlich i.O. ist, wenn ich anm folgende Aufgabe wie folgt rangehe:

Gib den Punkt [mm] (\wurzel{3},3,2) [/mm] des kartesischen Koordinatensystems in Zylinderkoordinaten und Kugelkoordinaten an.

Sei [mm] (x,y,z)=(\wurzel{3},3,2) [/mm]

Es ergibt sich somit in Polarkoordinaten [mm] (r,\varphi,z): [/mm]
x=r [mm] \cdot [/mm] cos [mm] \varphi [/mm]
y=r [mm] \cdot [/mm] sin [mm] \varphi [/mm]
[mm] r=\wurzel{x^2+y^2} [/mm]

Es ergibt sich somit in Zylinderkoordinaten [mm] (r,\varphi,z): [/mm]
x=r [mm] \cdot [/mm] cos [mm] \varphi [/mm]
y=r [mm] \cdot [/mm] sin [mm] \varphi [/mm]
[mm] z=\wurzel{x^2+y^2} [/mm]

Es ergibt sich somit in Kugelkoordinaten [mm] (r,\theta,\varphi): [/mm]
x=r [mm] \cdot sin\theta cos\varphi [/mm]
y=r [mm] \cdot sin\theta sin\varphi [/mm]
z=r [mm] \cdot cos\theta [/mm]
[mm] r=\wurzel{x^2+y^2+z^2} [/mm]

Ich berechne also in Polarkoordinaten zunächst meinen Radius und anschließend gebe ich die Punkte des kartesischen Koordinatensystems in Zylinderkoordinaten und Kugelkoordinaten an.

Hier noch eine Skizze in Kartesischen Koordinaten:

[Dateianhang nicht öffentlich]

Wäre für jede Hilfe dankbar.

mfg dodo4ever

Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
        
Bezug
Koordinatensysteme: Antwort
Status: (Antwort) fertig Status 
Datum: 12:50 Mo 28.11.2011
Autor: fred97


> Hallo Matheraum :)
>  
> Ich wollte mal fragen, ob es grundsätzlich i.O. ist, wenn
> ich anm folgende Aufgabe wie folgt rangehe:
>  
> Gib den Punkt [mm](\wurzel{3},3,2)[/mm] des kartesischen
> Koordinatensystems in Zylinderkoordinaten und
> Kugelkoordinaten an.
>  
> Sei [mm](x,y,z)=(\wurzel{3},3,2)[/mm]
>  
> Es ergibt sich somit in Polarkoordinaten [mm](r,\varphi,z):[/mm]
>  x=r [mm]\cdot[/mm] cos [mm]\varphi[/mm]
>  y=r [mm]\cdot[/mm] sin [mm]\varphi[/mm]
>  [mm]r=\wurzel{x^2+y^2}[/mm]
>  
> Es ergibt sich somit in Zylinderkoordinaten [mm](r,\varphi,z):[/mm]
>  x=r [mm]\cdot[/mm] cos [mm]\varphi[/mm]
>  y=r [mm]\cdot[/mm] sin [mm]\varphi[/mm]
>  [mm]z=\wurzel{x^2+y^2}[/mm]

Das ist nicht O.K.

Richtig:

  x=r [mm]\cdot[/mm] cos [mm]\varphi[/mm]
y=r [mm]\cdot[/mm] sin [mm]\varphi[/mm]
[mm]r=\wurzel{x^2+y^2}[/mm]
z=z

>  
> Es ergibt sich somit in Kugelkoordinaten
> [mm](r,\theta,\varphi):[/mm]
>  x=r [mm]\cdot sin\theta cos\varphi[/mm]
>  y=r [mm]\cdot sin\theta sin\varphi[/mm]
>  
> z=r [mm]\cdot cos\theta[/mm]
>  [mm]r=\wurzel{x^2+y^2+z^2}[/mm]

O.K.


>  
> Ich berechne also in Polarkoordinaten zunächst meinen
> Radius

Na ja, möglicherweise meinst Du das Richtige.

In Zylinderkoordinaten ist [mm] r=\wurzel{x^2+y^2} [/mm]

In Kugelkoordinaten ist [mm] r=\wurzel{x^+y^+z^2} [/mm]

>  und anschließend gebe ich die Punkte des
> kartesischen Koordinatensystems in Zylinderkoordinaten und
> Kugelkoordinaten an.

Ja

FRED

>  
> Hier noch eine Skizze in Kartesischen Koordinaten:
>  
> [Dateianhang nicht öffentlich]
>  
> Wäre für jede Hilfe dankbar.
>  
> mfg dodo4ever


Bezug
                
Bezug
Koordinatensysteme: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:21 Mo 28.11.2011
Autor: dodo4ever

Hallo und danke für die Hilfe fred97...

Dann muss ich das ganze natürlich nicht erst in Polarkoordinaten umrechnen, sondern kann direkt von den kartesischen Koordinaten in Zylinderkoordinaten und Kugelkoordinaten umrechnen...

Es hatte sich leider ein kleiner Fehler eingeschlichen...

richtig ist (wie du auch schreibst):

Zylinderkoordinaten:

x=r [mm] \cdot [/mm] cos [mm] \varphi [/mm]
y=r [mm] \cdot [/mm] sin [mm] \varphi [/mm]
[mm] r=\wurzel{x^2+y^2} [/mm]
z=z

Mein Fehler kam wahrscheinlich durch Kopieren und Einfügen (Guttenberg lässt Grüßen) :)

Nun zu meinen Lösungen:::

Der ,,Kartesische" Punkt [mm] (x,y,z)=(\wurzel{3},3,2) [/mm] in Zylinderkoordinaten ausgedrückt ergibt:

[mm] r=\wurzel{{\wurzel{3}}^2+3^2}=\wurzel{12}=\wurzel{4 \cdot 3}=2 \cdot \wurzel{3} [/mm]

[mm] \varphi=arccos{\bruch{x}{r}}=arccos{\bruch{\wurzel{3}}{2 \cdot {\wurzel{3}}}}=arccos{\bruch{1}{2}}=\bruch{\pi}{3} [/mm]

z=2

Also: [mm] (r,\varphi,z)=(2 \cdot \wurzel{3},\bruch{\pi}{2},2) [/mm]

Der ,,Kartesische" Punkt [mm] (x,y,z)=(\wurzel{3},3,2) [/mm] in Kugelkoordinaten ausgedrückt ergibt:

[mm] r=\wurzel{{\wurzel{3}}^2+3^2+2^2}=\wurzel{16}=4 [/mm]

[mm] \theta=arccos\bruch{z}{r}=arccos\bruch{2}{4}=arccos\bruch{1}{2}=\bruch{\pi}{2},2) [/mm]

z=2

Also: [mm] (r,\theta,z)=(4,\bruch{\pi}{2},2) [/mm]

mfg dodo4ever

Bezug
                        
Bezug
Koordinatensysteme: Antwort
Status: (Antwort) fertig Status 
Datum: 15:08 Mo 28.11.2011
Autor: leduart

Hallo
die zylinderkoo sind richtig,
Kugelkoordinaten haben kein z, es fehlt [mm] \phi [/mm]
und [mm] arccos(0.5)\ne \pi/2 [/mm]
den [mm] cos(\pi/2) [/mm] sollte man kennen!
Gruss leduart

Bezug
                                
Bezug
Koordinatensysteme: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:28 Mo 28.11.2011
Autor: dodo4ever

Hallo...

Ja also [mm] cos(\bruch{\pi}{2})=0 [/mm] aber wofür brauche ich den in dieser Aufgabe?

Hier nochmal meine Lösungen:

Kartesischer Punkt [mm] (\wurzel(3),3,2) [/mm] in Zylinderkoo.:

[mm] r=\wurzel{12}=\wurzel{4 \cdot 3}=2 \cdot \wurzel{3} [/mm]

[mm] \varphi=arccos\bruch{x}{r}=arccos\bruch{\wurzel{3}}{2 \cdot \wurzel{3}}=arccos\bruch{1}{2}=\bruch{\pi}{3} [/mm]

z=2

Und somit: (2 [mm] \cdot \wurzel{3},\bruch{\pi}{2},2) [/mm]


Kartesischer Punkt [mm] (\wurzel(3),3,2) [/mm] in Kugelkoo.:

[mm] r=\wurzel{16}=4 [/mm]

[mm] \theta=arccos\bruch{z}{r}=arccos\bruch{2}{4}=\bruch{\pi}{3} [/mm]

[mm] \varphi=arccos\bruch{x}{r \cdot sin\theta}=arccos\bruch{\wurzel{3}}{4 \cdot sin\bruch{\pi}{3}}=arccos\bruch{\wurzel{3}}{7 \cdot \wurzel{3} \cdot 2}=\bruch{\pi}{3} [/mm]

Und somit: (4, [mm] \bruch{\pi}{3}, \bruch{\pi}{3}) [/mm]

wofür jetzt [mm] cos(\pi/2)=0vich [/mm] habe doch nur den arccos oder?

mfg dodo4ever

Bezug
                                        
Bezug
Koordinatensysteme: Antwort
Status: (Antwort) fertig Status 
Datum: 01:11 Di 29.11.2011
Autor: leduart

Hallo
jetzt alles richtig.
das mit [mm] cos(\pi/2)=0 [/mm] sagt dass [mm] arcos(0)=\pi\2 [/mm] ist und sicher nicht [mm] arcos(0.5)=\pi/2! [/mm]
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]