matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGeraden und EbenenKoordinatengleichung einer E.
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Geraden und Ebenen" - Koordinatengleichung einer E.
Koordinatengleichung einer E. < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Koordinatengleichung einer E.: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 21:16 Mo 14.09.2009
Autor: low_head

Aufgabe
Bestimmen Sie eine Koordinatengleichung der Ebene E.

gegeben: S1 ( 2|0|0) S2 (0|5|0) S3 (0|0|3)

Meine Koordinatengleichung wäre dann:

7,5x1 + 3x2 + 5x3 = 15

richtig?

Ich will nur wissen, ob ich's verstanden hab >.<

        
Bezug
Koordinatengleichung einer E.: Antwort
Status: (Antwort) fertig Status 
Datum: 21:20 Mo 14.09.2009
Autor: steppenhahn

Hallo!

> Bestimmen Sie eine Koordinatengleichung der Ebene E.
>  gegeben: S1 ( 2|0|0) S2 (0|5|0) S3 (0|0|3)
>  
> Meine Koordinatengleichung wäre dann:
>  
> 7,5x1 + 3x2 + 5x3 = 15
>
> richtig?

Ja, die ist richtig [ok]. Das kannst du auch ganz einfach selbst testen, indem du jeweils die Koordinaten der drei gegeben Punkte einsetzt und prüfst, ob wirklich  die rechte Seite, also 15, herauskommt.

Grüße,
Stefan

Bezug
                
Bezug
Koordinatengleichung einer E.: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 21:23 Mo 14.09.2009
Autor: low_head

gut.. und wenn ich nun im negativen Bereich bin wie z.B bei:

S1(1|0|0) S2(0|4|0) S3(0|0|-3)

wäre die Lösung:

E: 4x1 + x2 - 4/3*x3 = 4  

richtig? - also nach dem selben Prinzip?

Edit:

Wie siehts mit Besonderheiten wie... "parallel zu einer Achse" aus?

Beispiel: S2(0|3|0)

E: x1 + x2 + x3 = 3

und die Ebene ist dann parallel zu X1 und x3 richtig?

Bezug
                        
Bezug
Koordinatengleichung einer E.: Antwort
Status: (Antwort) fertig Status 
Datum: 21:28 Mo 14.09.2009
Autor: MathePower

Hallo low_head,

> gut.. und wenn ich nun im negativen Bereich bin wie z.B
> bei:
>  
> S1(1|0|0) S2(0|4|0) S3(0|0|-3)
>  
> wäre die Lösung:
>  
> E: 4x1 + x2 - 4/3*x3 = 4  
>
> richtig? - also nach dem selben Prinzip?


Ja. [ok]


Gruss
MathePower

Bezug
                        
Bezug
Koordinatengleichung einer E.: Antwort
Status: (Antwort) fertig Status 
Datum: 21:39 Mo 14.09.2009
Autor: MathePower

Hallo low_head,

> gut.. und wenn ich nun im negativen Bereich bin wie z.B
> bei:
>  
> S1(1|0|0) S2(0|4|0) S3(0|0|-3)
>  
> wäre die Lösung:
>  
> E: 4x1 + x2 - 4/3*x3 = 4  
>
> richtig? - also nach dem selben Prinzip?
>  
> Edit:
>  
> Wie siehts mit Besonderheiten wie... "parallel zu einer
> Achse" aus?
>  
> Beispiel: S2(0|3|0)
>  
> E: x1 + x2 + x3 = 3
>  
> und die Ebene ist dann parallel zu X1 und x3 richtig?


Wenn Du den Zahlenwert nimmst, der ungleich 0 ist,
dann lautet die Ebenengleichung [mm]x_{2}=3[/mm]

Diese Ebene ist dann parallel zur x1- und x3-Achse.


Gruss
MathePower

Bezug
                                
Bezug
Koordinatengleichung einer E.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:46 Mo 14.09.2009
Autor: low_head

und was wenn die Ebene nur zu x3 parallel ist?

Bsp.: S1(1|0|0)  S2(0|5|0)

Ist die Koordinatengleichung dann:

5x1 + x2 = 5



Bezug
                                        
Bezug
Koordinatengleichung einer E.: Antwort
Status: (Antwort) fertig Status 
Datum: 22:00 Mo 14.09.2009
Autor: MathePower

Hallo low_head,

> und was wenn die Ebene nur zu x3 parallel ist?
>  
> Bsp.: S1(1|0|0)  S2(0|5|0)


Nun, durch 2 Punkte ist eine Gerade gegeben.

Für eine Ebene im Raum benötigst Du 3 Punkte.


>
> Ist die Koordinatengleichung dann:
>  
> 5x1 + x2 = 5
>  


Eine Gerade im Raum, kannst Du als Schnittpunkt zweier Ebenen definieren.

Hier ist die Gerade, Schnittpunkt der Ebenen

[mm]E:5x_{1}+x_{2}=5[/mm]

und

[mm]F:x_{3}=0[/mm]


Gruss
MathePower  

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]