matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra / VektorrechnungKoordinatengeometrie
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Algebra / Vektorrechnung" - Koordinatengeometrie
Koordinatengeometrie < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Koordinatengeometrie: Kreise und Geraden (LS 11)
Status: (Frage) beantwortet Status 
Datum: 13:32 Mo 03.12.2007
Autor: Annemareike

Aufgabe
LS 11 NRW Klett, Seite 29; Aufgabe 9
Bestimme die Berührpunkte und Gleichungen der Tangenten an den Kreis k, die parallel zur Geraden g sind
k: [mm] x^2+y^2=25 [/mm]   g: 3x+4y=10

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Wir schreiben am Mittwoch eine Klausur, ein Teilthema dieser Klausur lautet Kreise und Tangenten. Ich habe eine Frage zu Aufgabe 9
Klar zu erst muss ich testen ob g schon eine Tangente ist, dazu habe ich sie nach y aufgelöst und eingesetzt. Dann kam raus, dass g eine Sekante ist... wie geht es jetzt weiter?

        
Bezug
Koordinatengeometrie: tipp
Status: (Antwort) fertig Status 
Datum: 14:55 Mo 03.12.2007
Autor: molekular


> LS 11 NRW Klett, Seite 29; Aufgabe 9
>  Bestimme die Berührpunkte und Gleichungen der Tangenten an
> den Kreis k, die parallel zur Geraden g sind
>  k: [mm]x^2+y^2=25[/mm]   g: 3x+4y=10
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  Wir schreiben am Mittwoch eine Klausur, ein Teilthema
> dieser Klausur lautet Kreise und Tangenten. Ich habe eine
> Frage zu Aufgabe 9
>  Klar zu erst muss ich testen ob g schon eine Tangente ist,
> dazu habe ich sie nach y aufgelöst und eingesetzt. Dann kam
> raus, dass g eine Sekante ist... wie geht es jetzt weiter?

hallo anne...

du hast g schonmal nach y aufgelöst...das is schonmal gut. [mm] $y=\bruch{-3x}{4}+\bruch [/mm] {5}{2}$
Versuche auch die kreisgleichung nach y aufzulösen.
nun, da die tangenten des kreises parallel zu g sein sollen, mußt du die tangenten des kreises finden welche die selbe steigung wie g haben, also die steigung [mm] $m=\bruch{-3}{4}=y'_{kreis}(x)$ [/mm] haben.
ich hoffe ihr habt differenzieren schon in der schule behandelt?!
nun kannst du mit hilfe der ableitung schauen an welchen stellen die gleichung erfüllt ist also [mm] y'_{kreis}(x)=\bruch{-3}{4} [/mm] ist. wenn du die stellen (vermutlich zwei) gefunden hast, kannst du sie in deine kreisgleichung einsetzten und die zugehörige y koordinate berechnen...dann hast du die berührpunkte und die steigung in diesen...somit hast du alles was du für die geradengleichung der tangenten brauchst...ich hoffe das ist soweit verständlich...sonst frag nochmal nach

-molek-[cap]

Bezug
                
Bezug
Koordinatengeometrie: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 15:23 Mo 03.12.2007
Autor: Annemareike

Aufgabe
[> LS 11 NRW Klett, Seite 29; Aufgabe 9
>  Bestimme die Berührpunkte und Gleichungen der Tangenten an
> den Kreis k, die parallel zur Geraden g sind
>  k: $ [mm] x^2+y^2=25 [/mm] $   g: 3x+4y=10  


Danke erstmal für deine Lösung.
Also das mit dem differenzieren habe ich nicht so ganz verstanden...
Könnte man auch irgendwie mit der ortogonalen Geraden zu g arbeiten die sich durch die Strecke vom Mittelpunkt bis zum Schnittpunkt mit g ergibt?
Also so klappt das je, wenn es sich schon um eine Tangente handelt...


Bezug
                        
Bezug
Koordinatengeometrie: Antwort
Status: (Antwort) fertig Status 
Datum: 15:34 Mo 03.12.2007
Autor: molekular


> [> LS 11 NRW Klett, Seite 29; Aufgabe 9
>  >  Bestimme die Berührpunkte und Gleichungen der Tangenten
> an
>  > den Kreis k, die parallel zur Geraden g sind

>  >  k: [mm]x^2+y^2=25[/mm]   g: 3x+4y=10
> Danke erstmal für deine Lösung.
>  Also das mit dem differenzieren habe ich nicht so ganz
> verstanden...
>  Könnte man auch irgendwie mit der ortogonalen Geraden zu g
> arbeiten die sich durch die Strecke vom Mittelpunkt bis zum
> Schnittpunkt mit g ergibt?
>  Also so klappt das je, wenn es sich schon um eine Tangente
> handelt...

---------------------------------------------

ja das geht natürlich auch. wie du schon sagst, stelle die orthogonale gerade auf g durch M (mittelpunkt des kreises) auf und berechne die schittpunkte dieser geraden und deinem kreis. diese schnittpunkte sind dann die berührpunkte und für die tangentengleichungen, wie oben beschrieben verfahren...

Bezug
                                
Bezug
Koordinatengeometrie: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:46 Mo 03.12.2007
Autor: Annemareike

Dankeschön, ich versuch jetzt erstmal das so zu rechen...

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]