matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenRationale FunktionenKoordinatenberechnung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Rationale Funktionen" - Koordinatenberechnung
Koordinatenberechnung < Rationale Funktionen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Koordinatenberechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:41 So 31.05.2009
Autor: matherein

Aufgabe
Gegeben ist die Funktion f mit f(x) = [mm] \bruch{x}{x+1} [/mm]
b) Der Graph von f hat zwei Tangenten, die parallel zur 1. Winkelhalbierenden sind. Berechnen Sie die Koordinaten der beiden Berührpunkte.

Hallo Zusammen,

was heißt denn parallel zur 1. Winkelhalbierenden? Kann mir jemand erklären, warum ich wie was rechnen muss?

Bitte um Hilfe
matherein

        
Bezug
Koordinatenberechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 18:49 So 31.05.2009
Autor: zahllos

Hallo,

die Winkelhalbierende hat die Gleichung y = x. Wenn die Tangente an den Graphen von f paralel zur Winkelhalbierenden sein soll, muß sie die gleiche Steigung haben. Du berechnest also erst mal die Steigung der Winkelhalbierenden, dann die Ableitung von f und dann untersuchst du wo die Ableitung gleich der Steigung der Winkelhalbierenden ist.
Offenbar sind Funktionsgraph und Winkelhalbierende in diesen beiden Punkten nicht nur parallel, sondern sie berühren sich sogar, d.h. du mußt noch zeigen, dass diese beiden Punkte tatsächlich auf der Winkelhalbierenden liegen.

Bezug
                
Bezug
Koordinatenberechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:20 So 31.05.2009
Autor: matherein

Hallo zahllos,

danke für die ausführliche Antwort.

Ist die Steigung der Winkelhalbierenden 1?

Dann muss ich also rechnen: [mm] \bruch{1}{(x+1)²} [/mm] = 1

1 = x² +2x + 1

0 = x² + 2x

Wie rechne ich weiter? Laut Lösungsbuch kommt raus: [mm] B_{1}(0/0) B_{2}(-2/2) [/mm]

matherein

Bezug
                        
Bezug
Koordinatenberechnung: ausklammern
Status: (Antwort) fertig Status 
Datum: 20:22 So 31.05.2009
Autor: Loddar

Halloo matherein!


> Ist die Steigung der Winkelhalbierenden 1?

[ok]

  

> Dann muss ich also rechnen: [mm]\bruch{1}{(x+1)²}[/mm] = 1

[ok]


> 1 = x² +2x + 1
>  
> 0 = x² + 2x
>  
> Wie rechne ich weiter?

Klammere $x_$ aus .


Gruß
Loddar


Bezug
                                
Bezug
Koordinatenberechnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:40 Mo 01.06.2009
Autor: matherein

Ach so, ja klar. Danke, Loddar.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]