matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSonstigesKoordinatenachsen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Sonstiges" - Koordinatenachsen
Koordinatenachsen < Sonstiges < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Koordinatenachsen: Schnittstellen
Status: (Frage) beantwortet Status 
Datum: 12:00 Di 17.01.2012
Autor: mbau16

Aufgabe
Ermitteln Sie die Schnittstellen mit den Koordinatenachsen:

[mm] \bruch{x^{2}-16}{x(x-1)(x^{2}-4)}=0 [/mm]

Guten Tag,

habe eine Frage bezüglich der Schnittstellen mit der x- und y-Achse.

[mm] \bruch{x^{2}-16}{x(x-1)(x^{2}-4)}=0 [/mm]

Nullstellen (Zähler gleich 0)

[mm] x^{2}-16=0 [/mm]

[mm] x_{1,2}=\pm4 [/mm]

Muss ich jetzt den Wert 0 in die Ausgangsgleichung einsetzen, um den Schnittpunktt mit der y-Achse zu ermitteln?

Vielen Dank

Gruß

mbau16



        
Bezug
Koordinatenachsen: Definitionsbereich beachten
Status: (Antwort) fertig Status 
Datum: 12:02 Di 17.01.2012
Autor: Roadrunner

Hallo mbau!


> [mm]\bruch{x^{2}-16}{x(x-1)(x^{2}-4)}=0[/mm]
>  
> Nullstellen (Zähler gleich 0)
>  
> [mm]x^{2}-16=0[/mm]
>  
> [mm]x_{1,2}=\pm4[/mm]

[ok]


> Muss ich jetzt den Wert 0 in die Ausgangsgleichung einsetzen,
> um den Schnittpunktt mit der y-Achse zu ermitteln?

Das wäre die normale Vorgehensweise.
Aber was weißt Du über $x \ = \ 0$ bezüglich der Definitionsmenge?


Gruß vom
Roadrunner


Bezug
                
Bezug
Koordinatenachsen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:05 Di 17.01.2012
Autor: mbau16

Hallo,

ich weiß, dass [mm] 0\not\in\IR [/mm] ! Wie gehe ich vor!

Vielen Dank

mbau16

Bezug
                        
Bezug
Koordinatenachsen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:09 Di 17.01.2012
Autor: fred97



> Hallo,
>  
> ich weiß, dass [mm]0\not\in\IR[/mm] !

Seit wann ?  Es ist 0 [mm] \in \IR [/mm]   !!!


>  Wie gehe ich vor!

Was ist Deine FRage ?

FRED

>  
> Vielen Dank
>  
> mbau16


Bezug
                                
Bezug
Koordinatenachsen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:15 Di 17.01.2012
Autor: mbau16

Hallo,


> $ [mm] \bruch{x^{2}-16}{x(x-1)(x^{2}-4)}=0 [/mm] $
>  
> Nullstellen (Zähler gleich 0)
>  
> $ [mm] x^{2}-16=0 [/mm] $
>  
> $ [mm] x_{1,2}=\pm4 [/mm] $

[ok]


> Muss ich jetzt den Wert 0 in die Ausgangsgleichung einsetzen,
> um den Schnittpunktt mit der y-Achse zu ermitteln?

Das wäre die normale Vorgehensweise.
Aber was weißt Du über $ x \ = \ 0 $ bezüglich der Definitionsmenge?

Meine Antwort:

[mm] 0\not\in\IR [/mm]

da [mm] x\in\IR\backslash\{-2,0,1,2\} [/mm]

Wie gehe ich hier vor, um den Schnittpunkt mit der y-Achse zu ermitteln?

Vielen Dank

Gruß

mbau16


Bezug
                                        
Bezug
Koordinatenachsen: kein Schnittpunkt
Status: (Antwort) fertig Status 
Datum: 12:20 Di 17.01.2012
Autor: Roadrunner

Hallo mbau!


Dass [mm] $x\notin\IR$ [/mm] Quatsch ist, hat Dir Fred schon verraten, da die arme Null selbstverständlich eine reelle Zahl ist.

Du meinst aber wohl, dass $x \ = \ 0$ nicht in der Definitionsmenge für die Funktion enthalten ist. Das trifft die Sache schon viel eher.

Und damit gibt es hier auch keinen Schnittpunkt mit der y-Achse.


Gruß vom
Roadrunner

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]