matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare AbbildungenKoordinatenabbildung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Abbildungen" - Koordinatenabbildung
Koordinatenabbildung < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Koordinatenabbildung: Allgemeines Verständnis
Status: (Frage) beantwortet Status 
Datum: 20:53 Do 11.12.2008
Autor: Octron

Aufgabe
Gegeben ist die Basis im Verktorraum R³

[mm] B=\vektor{0 \\ -5 \\ 0} \vektor{-1 \\ 0 \\ 0} \vektor{0 \\ 0 \\ 4} [/mm]

Gesucht ist die Koordinatenabbildung
KB: R³ [mm] \mapsto [/mm] R³

[mm] \vektor{a \\ b \\ c} \mapsto \vektor{?? \\ ?? \\ ??} [/mm]

Hallo, ich hab grade echt ein Problem mit dieser Aufgabe. Ich weiß, dass die eigentlich total leicht sein sollte, aber ich komm jetzt nichtmals auf den Ansatz, wie ich das zu berechnen hätte. Könnte mir dazu jemand ein paar erklärende Worte sagen?
Vielen Dank!


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Koordinatenabbildung: Antwort
Status: (Antwort) fertig Status 
Datum: 21:50 Do 11.12.2008
Autor: mathmetzsch

Hallo,

dazu musst du dir mal überlegen, was eine Basis genau ist. Basis heißt doch, man kann mithilfe der Basisvektoren jeden bel. anderen Vektor des VR eindeutig darstellen. Das heißt also, ein beliebiger Vektor x ist

[mm] x=k_{1}*\vektor{0 \\ -5 \\0}+k_{2}*\vektor{-1 \\ 0 \\0}+k_{3}*\vektor{0 \\ 0 \\4}, k_{i}\in\IR [/mm]

So, und wie bekommst du jetzt die gesuchte Abbildung?

Grüße, Daniel

Bezug
                
Bezug
Koordinatenabbildung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:14 Do 11.12.2008
Autor: Octron

Also ich würde das jetzt vielleicht in eine erweiterte Matrix packen und sie in Normalzeilenstufenform bringen. Bekomme ich dann so die Koordinatenabbildung raus?

Das würde dann so aussehen:

[mm] \vmat{ 0 & -5 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 4 } [/mm]

Wie ich das hier erweitert darstellen kann, weiß ich jetzt nicht. Ich hätte auf jeden Fall raus:

[mm] \vektor{-k2/5 \\ -k1 \\ k3/4} [/mm]

Stimmt das? Bzw. wäre das schon die endgültige Lösung?

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]