matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare AbbildungenKoordinaten von Polynomen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Abbildungen" - Koordinaten von Polynomen
Koordinaten von Polynomen < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Koordinaten von Polynomen: Korrektur
Status: (Frage) beantwortet Status 
Datum: 04:13 So 08.12.2013
Autor: Cccya

Aufgabe
Betrachten Sie im reellen Vektorraum V3 der Polynome mit reellen Koeffizienten vom
Grad kleiner oder gleich drei die Polynome

pj = [mm] (1-X)^j [/mm]        j Element (0,1,2,3)

q1 = [mm] X^2-X [/mm]

q2 = [mm] X^3-1 [/mm]

a) Geben Sie die Koordinaten von q1 und q2 bezüglich der geordneten Basis B =
(p0; p1; p2; p3) an (es darf vorausgesetzt werden, dass B eine Basis ist).

b)Beweisen Sie, dass q1; q2 linear unabhängig sind und ergänzen Sie die Menge (q1; q2)
durch Elemente von B zu einer Basis von V3.

Begründen Sie Ihre Ergebnisse.

Ich habe diese Frage in keinem anderen Forum gestellt.

Meine Lösung:
a) Ich mache einen Koeffizientenvergleich der Form (für q1):

[mm] aX^3+bX^2+cX+d [/mm] = [mm] y2X^2+y3X [/mm] weil die gegebene Basis auch jederzeit zu [mm] (1,x,x^2,x^3) [/mm] umgeformt werden kann. Dann komme ich auf (0,1,-1,0)
Für q2 analog (1,0,0,-1)

b) Man kann die gerade Bestimmten Koordinaten bezüglich der geordneten Basis verwenden: a(0,1,-1,0)+b(1,0,0,-1)=(0,0,0,0) ist offensichtlich nur für a=b=0 erfüllt. Um zur Basis zur Ergänzen muss man nur überprüfen mit welchen Ergänzungen man alle Elemente der geordneten Basis darstellen kann. Dies ist z.B. möglich mit [mm] (1,x,(x^2-x),(x^3-1)) [/mm] weil [mm] x^2= (x^2-x)-x [/mm]
und [mm] x^3=(x^3-1)-1 [/mm]

Sind diese Lösungen korrekt und was müsste ich eventuell noch an Begründungen schreiben?
Vielen Dank schonmal.  

        
Bezug
Koordinaten von Polynomen: Antwort
Status: (Antwort) fertig Status 
Datum: 07:00 So 08.12.2013
Autor: angela.h.b.


> Betrachten Sie im reellen Vektorraum V3 der Polynome mit
> reellen Koeffizienten vom
> Grad kleiner oder gleich drei die Polynome

>

> pj = [mm](1-X)^j[/mm] j Element (0,1,2,3)

>

> q1 = [mm]X^2-X[/mm]

>

> q2 = [mm]X^3-1[/mm]

>

> a) Geben Sie die Koordinaten von q1 und q2 bezüglich der
> geordneten Basis B =
> (p0; p1; p2; p3) an (es darf vorausgesetzt werden, dass B
> eine Basis ist).

>

> b)Beweisen Sie, dass q1; q2 linear unabhängig sind und
> ergänzen Sie die Menge (q1; q2)
> durch Elemente von B zu einer Basis von V3.

>

> Begründen Sie Ihre Ergebnisse.
> Ich habe diese Frage in keinem anderen Forum gestellt.

>

> Meine Lösung:
> a) Ich mache einen Koeffizientenvergleich der Form (für
> q1):

>

> [mm]aX^3+bX^2+cX+d[/mm] = [mm]y2X^2+y3X[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)



Hallo,

ich verstehe nicht, was Du tust.

Du mußt a,b,c,d finden mit

X^2-X=a(1-X)^0+b(1-X)^1+c(1-X)^2+d(1-X)^3,

der Koordinatenvektor bzgl B ist dann \vektor{a\\b\\c\\d).


> weil die gegebene Basis auch
> jederzeit zu [mm](1,x,x^2,x^3)[/mm] umgeformt werden kann. Dann
> komme ich auf (0,1,-1,0)

Schauen wir mal:

[mm] \vektor{0\\1\\-1\\0}=1*(1-X)-1*(3X-3X^2+X^31-X)^2=1-X-1+2X-X^2=X-X^2\not=q_1. [/mm]

> Für q2 analog (1,0,0,-1)

[mm] =(1-X)^0-(1-X)^3=1-1+3X-3X^2+X^3=3X-3X^2+X^3\not=q_2 [/mm]


>

> b) Man kann die gerade Bestimmten Koordinaten bezüglich
> der geordneten Basis verwenden:
> a(0,1,-1,0)+b(1,0,0,-1)=(0,0,0,0) ist offensichtlich nur
> für a=b=0 erfüllt.

Das kann man so machen.

Man kann aber auch vorrechnen, daß

aus [mm] aq_1+bq_2=0 [/mm] folgt a=b=0.


> Um zur Basis zur Ergänzen muss man
> nur überprüfen mit welchen Ergänzungen man alle Elemente
> der geordneten Basis darstellen kann.

So kann (!) man das machen.

> Dies ist z.B.
> möglich mit [mm](1,x,(x^2-x),(x^3-1))[/mm] weil [mm]x^2= (x^2-x)-x[/mm]
> und
> [mm]x^3=(x^3-1)-1[/mm]

Die Überlegung stimmt, aber Du solltest auch unbedingt vorrechnen, daß [mm] (1,x,(x^2-x),(x^3-1)) [/mm] linear unabhängig ist und dann sagen: diese 4 linear unabhängige Vektoren sind eine Basis, denn [mm] V_3 [/mm] hat die Dimension 4.

LG Angela

>

> Sind diese Lösungen korrekt und was müsste ich eventuell
> noch an Begründungen schreiben?
> Vielen Dank schonmal.


Bezug
                
Bezug
Koordinaten von Polynomen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:44 So 08.12.2013
Autor: Cccya

Vielen Dank für deine Antwort. Wir haben das bei uns glaube ich so eingeführt dass beim Koeffizientenvergleich vom höchsten Polynom zum niedrigsten gezählt wird. Deshalb ist a bei mir die Koordinate bezüglich [mm] (1-X)^3 [/mm] und b die bezüglich [mm] (1-X)^2 [/mm] usw. So komme ich dann auf:

[mm] 0*(1-X)^3+1*(1-X)^2+-1*(1-X)+0*1 [/mm] = [mm] 1-2X+X^2 -1+X=X^2-X=q1 [/mm]

Ich sehe aber auch grad dass ich bei meinem Ansatz  nen Schreibfehler drin habe, kein Wunder dass dir der merkwürdig vorkam :D.

Zu b): Ist die lineare Unabhängigkeit nicht schon klar weil eine Basis maximale lineare Teilmenge und minimales Erzeugendensystem ist und wenn daher die geordnete Basis 4 Elemente hat dann muss jedes andere Erzeugendensystem auch mindestens 4 linear unabhängige Elemente haben? Erzeugendensystem ist ja gezeigt weil die geordnete Basis dargestellt werden kann und weniger als 4 linear unabhängige Elemente sind nicht möglich.

Bezug
                        
Bezug
Koordinaten von Polynomen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:31 Mo 09.12.2013
Autor: angela.h.b.


> Vielen Dank für deine Antwort. Wir haben das bei uns
> glaube ich so eingeführt dass beim Koeffizientenvergleich
> vom höchsten Polynom zum niedrigsten gezählt wird.
> Deshalb ist a bei mir die Koordinate bezüglich [mm](1-X)^3[/mm] und
> b die bezüglich [mm](1-X)^2[/mm] usw. So komme ich dann auf:

>

> [mm]0*(1-X)^3+1*(1-X)^2+-1*(1-X)+0*1[/mm] = [mm]1-2X+X^2 -1+X=X^2-X=q1[/mm]

Hallo,

beim Koordinatenvektor kommt es auf die Reihenfolge der Basisvektoren in der Basis an.
Hier war gegeben:
>B =(p0; p1; p2; p3)
mit [mm] p_j:=(1-X)^j, [/mm]

und deshalb ist der Koordinatenvektor von [mm] p_1 [/mm] der Vektor [mm] \vektor{0\\-1\\1\\0}. [/mm]
Das ist nicht verhandelbar...


> Zu b): Ist die lineare Unabhängigkeit nicht schon klar
> weil eine Basis maximale lineare Teilmenge

linear unabhängige Teilmenge

> und minimales
> Erzeugendensystem ist und wenn daher die geordnete Basis 4
> Elemente hat dann muss jedes andere Erzeugendensystem auch
> mindestens 4 linear unabhängige Elemente haben?

Ja.

Du kannst es schon so machen:

> Erzeugendensystem ist ja gezeigt weil die geordnete Basis
> dargestellt werden kann

Weil die Standardbasis dargestellt werden kann, ist es ein Erzeugendensystem.
Es ist auch ein minimales Erzeugendensystem,
aber das müßte noch nachvollziehbar begründet werden. (Nicht unbedingt im Forum, aber auf Deinem Lösungsblatt)

LG Angela


> und weniger als 4 linear
> unabhängige Elemente sind nicht möglich.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]