matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSchul-AnalysisKoordinaten Geometrie
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Schul-Analysis" - Koordinaten Geometrie
Koordinaten Geometrie < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Koordinaten Geometrie: Ortogonalität
Status: (Frage) beantwortet Status 
Datum: 19:32 Do 18.08.2005
Autor: kelias

Hallo
Wir haben im Moment in der 11.Klasse das Thema Ortogonalität und Schnittwinkel. Könnte mir mal bitte einer erklären wie das Grundlegend funktioniert. Ich würde mich freuen. Danke

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Koordinaten Geometrie: Antwort
Status: (Antwort) fertig Status 
Datum: 23:25 Do 18.08.2005
Autor: djmatey

Hallo,
also ich gehe mal davon aus, dass es um Vektoren geht...
Zwei Vektoren stehen orthogonal aufeinander heißt, dass sie senkrecht, also im 90-Grad-Winkel aufeinander stehen. Das ist genau dann der Fall, wenn ihr Produkt v*w=0 ist.
Einen Vektor z, der orthogonal auf zwei Vektoren v=(a,b,c),w=(d,e,f) steht, findet man durch das Kreuzprodukt, z.B.
(a,b,c)x(d,e,f) = (bf-ce,cd-af,ae-bd).
Letzterer Vektor ist dann z, der senkrecht auf v und w steht.
Man benutzt die Orthogonalität oft zur Darstellung von Ebenen durch die Normalenform, wo der sogenannte Normalenvektor, der orthogonal auf der darzustellenden Ebene steht, diese eindeutig repräsentiert (falls ein Stützvektor angegeben ist).
Zum Thema Schnittwinkel:
Für zwei Vektoren v,w berechnest Du den Schnittwinkel  [mm] \alpha [/mm] durch
cos  [mm] \alpha [/mm] =  [mm] \bruch{|v*w|}{|v|*|w|}, [/mm] d.h. [mm] \alpha [/mm] kann man aus dieser Gleichung durch Anwendung von  [mm] cos^{-1} [/mm] auf beiden Seiten bekommen.
Was hast Du ansonsten für konkrete Fragen? Wäre nett, wenn Du etwas präzisieren könntest... :-)
Beste Grüße,
djmatey.

Bezug
        
Bezug
Koordinaten Geometrie: Winkel von Geraden?
Status: (Antwort) fertig Status 
Datum: 07:45 Fr 19.08.2005
Autor: Loddar

Guten Morgen kelias,

[willkommenmr] !!


Oder meintest Du hier den Winkel zwischen zwei Geraden in der Ebene?

Dann gilt folgende Formel: [mm] $\tan \varphi [/mm] \ = \ [mm] \bruch{m_2-m_1}{1+m_1*m_2}$ [/mm]

Dabei ist [mm] $\varphi$ [/mm] der (Schnitt-)Winkel zwischen zwei Geraden mit den jeweiligen Steigungen [mm] $m_1$ [/mm] und [mm] $m_2$ [/mm] .


Sollen diese beiden nun orthogonal (sprich: senkrecht) aufeinander stehen, ergibt sich folgender Zusammenhang: [mm] $\varphi [/mm] \ = \ 90°$

[mm] $\tan \varphi [/mm] \ = \ [mm] \tan [/mm] 90° \ = \ [mm] \bruch{1}{0} [/mm] \ = \ [mm] \bruch{m_2-m_1}{1+m_1*m_2}$ [/mm]

Der Ausdruck " [mm] $\bruch{1}{0}$ [/mm] " ist natürlich nur anschaulich anzusehen, da der tan an der Stelle [mm] $\alpha [/mm] \ = \ 90°$ nicht definiert ist, weil er dort gegen Unendlich strebt.

[mm] $\Rightarrow$ [/mm]   $0 \ = \ [mm] 1+m_1*m_2$ $\gdw$ $m_1*m_2 [/mm] \ = \ -1$

Wenn also das Produkt zweier Geradensteigungen gerade -1 ergibt, stehen diese beiden Geraden senkrecht aufeinander.


War es das, was Du wissen wolltest?

Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]