matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra / VektorrechnungKoordinaten- -> Parametergl.
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Algebra / Vektorrechnung" - Koordinaten- -> Parametergl.
Koordinaten- -> Parametergl. < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Koordinaten- -> Parametergl.: Frage
Status: (Frage) beantwortet Status 
Datum: 18:09 Mo 16.05.2005
Autor: Pedda

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Mohoin !
Ich habe eine Frage zur Umwandlung von Koordinatengleichung in Parametergleichung. Zunächst löst man die Gleichung ja nach einer Koordinate auf. Soweit kein Problem. Dann aber fügt man, wenn man zuerst nach x1 aufgelöst hat, für x2/x3 nur x2/x3 ein. Wieso darf man das dann aber nachher x2/x3 durch r und s ersetzen ?
tschö, Pedda

        
Bezug
Koordinaten- -> Parametergl.: Antwort
Status: (Antwort) fertig Status 
Datum: 18:41 Mo 16.05.2005
Autor: Fugre


> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> Mohoin !
>  Ich habe eine Frage zur Umwandlung von
> Koordinatengleichung in Parametergleichung. Zunächst löst
> man die Gleichung ja nach einer Koordinate auf. Soweit kein
> Problem. Dann aber fügt man, wenn man zuerst nach x1
> aufgelöst hat, für x2/x3 nur x2/x3 ein. Wieso darf man das
> dann aber nachher x2/x3 durch r und s ersetzen ?
>  tschö, Pedda

Hallo Pedda,

bitte benutze in Zukunft den Formeleditor, dann werden deine Artikel
viel besser lesbar. Aber nun zu deiner Frage, du willst die Koordinatenform:
[mm] $E:ax_1+bx_2+cx_3+d=0$ [/mm] in die Parameterform umwandeln.
Dann sagen wir einfach, dass unser [mm] $x_1$ [/mm] $r$ sei und unser [mm] $x_2$ [/mm] $s$.
Nach [mm] $x_3$ [/mm] lösen wir dann auf und erhalten:
[mm] $x_3=\frac{-ax_1-bx_2-d}{c} \richtarrow x_3=\frac{-ar-bs-d}{c}$ [/mm]
Und damit können wir unsere Parametergleichung erstellen:
In der [mm] $x_1$ [/mm] Zeile haben wir keine Zahl ohne Vorfaktor, eine mit $r$ als Koeffizient und keine mit $s$.
In der [mm] $x_2$ [/mm] Zeile haben wir keine Zahl ohne Vorfaktor, keine mit $r$, aber eine mit $s$.
In der [mm] $x_3$ [/mm] Zeile haben wir [mm] $\frac{-d}{c}$ [/mm] Zahlen ohne Vorfaktor, [mm] $\frac{-a}{c}$ [/mm] mit $r$ und [mm] $\frac{-b}{c}$ [/mm] mit $s$ als Koeffizient.
Zusammengefasst bedeutet dies:

[mm] $E:\vec x=\vektor{0 \\ 0 \\ \frac{-d}{c}}+r \vektor{1 \\ 0 \\ \frac{-a}{c}}+s \vektor{0 \\ 1 \\ \frac{-b}{c}}$ [/mm]

Dies geht natürlich nur dann, wenn $c [mm] \not= [/mm] 0$. In diesen Fällen musst du zu etwas anderem Umformen.

Guck dir am Besten auch  []hier mal das Skript zur Umwandlung der Darstellungsformen an.

Liebe Grüße
Fugre

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]