matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenTopologie und GeometrieKonvexität
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Topologie und Geometrie" - Konvexität
Konvexität < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvexität: Aufgabe
Status: (Frage) überfällig Status 
Datum: 21:26 Di 06.01.2009
Autor: Bebe

Aufgabe
Für A, B  [mm] \subseteq \IR [/mm] ^{2} und [mm] \lambda \in \IR [/mm] definieren wir
A+B:= {a+b [mm] \in \IR [/mm] ^{2}: a [mm] \in [/mm] A, b [mm] \in [/mm] B} sowie [mm] \lambda [/mm] A:={ [mm] \lambda [/mm] a [mm] \in \IR^{2}: [/mm] a [mm] \in [/mm] A }.
Zeigen Sie, dass A genau dann konvex ist, wenn [mm] \lambda1A+\lambda2A [/mm] = [mm] (\lambda1 [/mm] + [mm] \lambda2)A [/mm] für alle [mm] \lambda \ge [/mm] 0.

Hallo, vielleicht kann mir mal einer von euch bei dieser Aufgabe helfen. Ich hab keine Ahnung, wie ich damit anfangen soll. Wäre für einen Tipp sehr dankbar.

        
Bezug
Konvexität: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:20 Sa 10.01.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
Konvexität: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 07:08 So 11.01.2009
Autor: felixf

Hallo

> Für A, B  [mm]\subseteq \IR[/mm] ^{2} und [mm]\lambda \in \IR[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

definieren

> wir
>  A+B:= {a+b [mm]\in \IR[/mm] ^{2}: a [mm]\in[/mm] A, b [mm]\in[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

B} sowie [mm]\lambda[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)


> A:={ [mm]\lambda[/mm] a [mm]\in \IR^{2}:[/mm] a [mm]\in[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

A }.

> Zeigen Sie, dass A genau dann konvex ist, wenn
> [mm]\lambda1A+\lambda2A[/mm] = [mm](\lambda1[/mm] + [mm]\lambda2)A[/mm] für alle
> [mm]\lambda \ge[/mm] 0.

Nun, die Inklusion [mm] $(\lambda_1 [/mm] + [mm] \lambda_2) [/mm] A [mm] \subseteq \lambda_1 [/mm] A + [mm] \lambda_2 [/mm] A$ gilt fuer alle [mm] $\lambda_1, \lambda_2 \in \IR$. [/mm] Interessant ist also die andere Inklusion.

Fangen wir mal damit an, dass $A$ konvex ist. Sei jetzt $x = [mm] \lambda_1 [/mm] a + [mm] \lambda_2 [/mm] b [mm] \in \lambda_1 [/mm] A + [mm] \lambda_2 [/mm] A$, also $a, b [mm] \in [/mm] A$. Du musst $x [mm] \in (\lambda_1 [/mm] + [mm] \lambda_2) [/mm] A$ zeigen.

Ist [mm] $\lambda_1 [/mm] + [mm] \lambda_2 [/mm] = 0$, so gilt [mm] $\lambda_1 [/mm] = [mm] \lambda_2 [/mm] = 0$ und somit $x = 0 [mm] \in [/mm] 0 [mm] \cdot [/mm] A$; der Fall ist also langweilig.

Nehmen wir also an, dass [mm] $\lambda_1 [/mm] + [mm] \lambda_2 [/mm] > 0$ ist. Betrachte doch mal [mm] $\frac{1}{\lambda_1 + \lambda_2} [/mm] x$ und zeige dass dies in [mm] $\frac{1}{\lambda_1 + \lambda_2} (\lambda_1 [/mm] + [mm] \lambda_2) [/mm] A = A$ liegt; dies ist dazu aequivalent, dass $x [mm] \in (\lambda_1 [/mm] + [mm] \lambda_2) [/mm] A$ liegt. Allerdings gilt nun $0 [mm] \le \frac{lambda_1}{\lambda_1 + \lambda_2}, \frac{lambda_2}{\lambda_1 + \lambda_2}$ [/mm] und [mm] $\frac{lambda_1}{\lambda_1 + \lambda_2} [/mm] + [mm] \frac{lambda_2}{\lambda_1 + \lambda_2} [/mm] = 1$. Verwende nun, dass $A$ konvex ist.

Wenn du verstanden hast was hier vor sich geht, sollte die Rueckrichtung auch kein Problem sein.

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]