matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra SonstigesKonvexe transformation
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Algebra Sonstiges" - Konvexe transformation
Konvexe transformation < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvexe transformation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:59 Mo 08.07.2013
Autor: marianne88

Guten Tag

Ich habe eine Menge [mm] $K\subset\mathbb{R}$, [/mm] die konvex ist. Ich bin an folgender Grösse interessiert:

[mm] $b_k=\sum_{i=1}^k a_i$ [/mm] wobei [mm] $a_i\in [/mm] K$.

Wenn man nun [mm] $c_k:=\frac{1}{\sum_{i=1}^k 2^{-i}}$ [/mm] wählt, sollte [mm] $c_k\cdot b_k=c_k\cdot \sum_{i=1}^k a_i$ [/mm] eine transformation zu einer Konvexkombination sein. Ich habe dies einmal ausmultiplizert, aber ich sehe nicht, wieso sich daraus eine Konvexkombination ergibt, so dass ich daraus schliessen kann, dass [mm] $c_kb_k\in [/mm] K$.
Herzlichen Dank für eure Hilfe

Liebe Grüsse

marianne88

        
Bezug
Konvexe transformation: Antwort
Status: (Antwort) fertig Status 
Datum: 09:25 Mo 08.07.2013
Autor: fred97


> Guten Tag
>  
> Ich habe eine Menge [mm]K\subset\mathbb{R}[/mm], die konvex ist. Ich
> bin an folgender Grösse interessiert:
>  
> [mm]b_k=\sum_{i=1}^k a_i[/mm] wobei [mm]a_i\in K[/mm].
>  
> Wenn man nun [mm]c_k:=\frac{1}{\sum_{i=1}^k 2^{-i}}[/mm] wählt,
> sollte [mm]c_k\cdot b_k=c_k\cdot \sum_{i=1}^k a_i[/mm] eine
> transformation zu einer Konvexkombination sein. Ich habe
> dies einmal ausmultiplizert, aber ich sehe nicht, wieso
> sich daraus eine Konvexkombination ergibt, so dass ich
> daraus schliessen kann, dass [mm]c_kb_k\in K[/mm].
> Herzlichen Dank für eure Hilfe
>  
> Liebe Grüsse
>  
> marianne88


Das liefert ja schon im Falle k=2 keine Konvexkombination der [mm] a_i [/mm] !

Es ist [mm] c_2=\bruch{4}{3}, [/mm] also ist

  [mm] c_2*b_2=\bruch{4}{3}*a_1+\bruch{4}{3}*a_2 [/mm]

FRED

Bezug
                
Bezug
Konvexe transformation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:59 Di 09.07.2013
Autor: marianne88

Guten Morgen fred

Es hatte sich einen Fehler eingeschlichen. Richtig wäre:

[mm] $c_k\sum_{i=1}^k2^{-i}a_k$ [/mm]

Dies sollte nun eine konvex Kombination sein und stimmt auch für den Fall $k=2$. Ich sehe aber nicht so ganz, wieso dies auch für beliebige $k$'s gelten soll. Kann man das noch anderst als mittels Induktion beweisen?

Liebe Grüsse

marianne88

Bezug
                        
Bezug
Konvexe transformation: Antwort
Status: (Antwort) fertig Status 
Datum: 09:18 Di 09.07.2013
Autor: fred97


> Guten Morgen fred
>  
> Es hatte sich einen Fehler eingeschlichen. Richtig wäre:
>  
> [mm]c_k\sum_{i=1}^k2^{-i}a_k[/mm]

Da soll wohl

[mm]c_k\sum_{i=1}^k2^{-i}a_i[/mm]

stehen.


>  
> Dies sollte nun eine konvex Kombination sein und stimmt
> auch für den Fall [mm]k=2[/mm]. Ich sehe aber nicht so ganz, wieso
> dies auch für beliebige [mm]k[/mm]'s gelten soll. Kann man das noch
> anderst als mittels Induktion beweisen?

Du brauchst doch nur die Definition von [mm] c_k [/mm] !!!!

$ [mm] c_k=\frac{1}{\sum_{i=1}^k 2^{-i}} [/mm] $

Damit ist [mm] \sum_{i=1}^k \bruch{c_k}{2^i}=c_k* \sum_{i=1}^k \bruch{1}{2^i}= \bruch{c_k}{c_k}=1 [/mm]

FRED

>  
> Liebe Grüsse
>  
> marianne88


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]