matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-SonstigesKonvex/konkav
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Analysis-Sonstiges" - Konvex/konkav
Konvex/konkav < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvex/konkav: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:14 So 20.01.2008
Autor: rainman_do

Aufgabe
Bestimmen Sie für die folgendn Funktionen alle Intervalle, auf denen diese konvex bzw. konkav sind, und berechnen Sie alle Wendepunkte.
a) f:x [mm] \mapsto \bruch{1}{1+x^2} [/mm]
b) f:x [mm] \mapsto [/mm] tan x
c) f:x [mm] \mapsto [/mm] arctan x

Hallo, hab mal wieder ein paar Probleme, und zwar bei Aufgabe a) habe ich die zweite Ableitung berechnet, diese ist
[mm] f''(x)=\bruch{-2+4x^2+6x^4}{(1+x^2)^4} [/mm]
die Nullstellen sind [mm] -\bruch{1}{\wurzel{3}} [/mm] und [mm] \bruch{1}{\wurzel{3}} [/mm]
und die Wendepunkte sind [mm] (-\bruch{1}{\wurzel{3}},\bruch{3}{4}) [/mm] und [mm] (\bruch{1}{\wurzel{3}}, \bruch{3}{4}) [/mm]
Jetzt ist mein Problem die Intervalle zu bestimmen auf denen diese Funktion konvex bzw. konkav ist, also ich weiß dass die zweite Ableitung [mm] \ge [/mm] 0 sein muss damit f konvex ist, aber wie finde ich das entsprechende Intervall in dem f''(x) [mm] \ge [/mm] 0 gilt? Hab mir die Funktion mal plotten lassen, aber leider wird mir dadurch immernoch nicht klar wie ich herausfinde an welchen Stellen sie konvex/konkav ist, hier mal die Funktion

[Dateianhang nicht öffentlich]

Vielen Dank im Voraus.


Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
        
Bezug
Konvex/konkav: Antwort
Status: (Antwort) fertig Status 
Datum: 18:30 So 20.01.2008
Autor: Somebody


> Bestimmen Sie für die folgendn Funktionen alle Intervalle,
> auf denen diese konvex bzw. konkav sind, und berechnen Sie
> alle Wendepunkte.
>  a) f:x [mm]\mapsto \bruch{1}{1+x^2}[/mm]
>  b) f:x [mm]\mapsto[/mm] tan x
>  c) f:x [mm]\mapsto[/mm] arctan x
>  Hallo, hab mal wieder ein paar Probleme, und zwar bei
> Aufgabe a) habe ich die zweite Ableitung berechnet, diese
> ist
>  [mm]f''(x)=\bruch{-2+4x^2+6x^4}{(1+x^2)^4}[/mm]
>  die Nullstellen sind [mm]-\bruch{1}{\wurzel{3}}[/mm] und

Hier hättest Du eigentlich einen Faktor [mm] $1+x^2$ [/mm] kürzen können...

> [mm]\bruch{1}{\wurzel{3}}[/mm]
> und die Wendepunkte sind
> [mm](-\bruch{1}{\wurzel{3}},\bruch{3}{4})[/mm] und
> [mm](\bruch{1}{\wurzel{3}}, \bruch{3}{4})[/mm]
>  Jetzt ist mein
> Problem die Intervalle zu bestimmen auf denen diese
> Funktion konvex bzw. konkav ist, also ich weiß dass die
> zweite Ableitung [mm]\ge[/mm] 0 sein muss damit f konvex ist, aber
> wie finde ich das entsprechende Intervall in dem f''(x) [mm]\ge[/mm]
> 0 gilt?

Die Nullstellen von $f''(x)$, die Du gefunden hast, sind einfache Nullstellen. Zudem besitzt diese Funktion keine Polstellen: wird also nur gerade bei den beiden einfachen Nullstellen das Vorzeihen wechseln. Es genügt somit, das Vorzeichen von $f''(x)$ für ein $x$ zu kennen, das nicht gerade Nullstelle von $f''$ ist. Weit aussen ist z.B. sicherlich $f''(x)>0$ und somit ist $f''(x)>0$ für [mm] $x<-1/\sqrt{3}$ [/mm] und [mm] $x>+1/\sqrt{3}$, [/mm] sowie $f''(x)<0$ für [mm] $-1/\sqrt{3} Ich denke, dies sieht man auf Deinem Plot auch durchaus recht gut...

> [Dateianhang nicht öffentlich]


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]