matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenKonvergenzwert bestimmen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Folgen und Reihen" - Konvergenzwert bestimmen
Konvergenzwert bestimmen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenzwert bestimmen: Idee
Status: (Frage) beantwortet Status 
Datum: 20:24 Mi 09.02.2011
Autor: Karander

Aufgabe
Für welche x Konvergieren die Reihen und wogegen?

[mm]\summe_{k=1}^{ \infty} \bruch{sin(x)^n}{2+cos(x)} [/mm]

[mm]\summe_{k=1}^{ \infty} \bruch{log(x)^n}{n!} [/mm]


Bei der 2ten Reihe meine ich, dass sie nur für [mm] \bruch{1}{e} [/mm] konvergiert und dann gegen 0, wobei das hab ich mir nur überlegt, nicht ausgerechnet.

Die erste macht mir mehr Probleme. Wegen [mm]\bruch{a_{n+1}}{a_n}=sinx[/mm] würde ich sagen, dass diese Konvergiert für [mm] x \in \IR/2 \pi a [/mm] wobei [mm]a \in \IZ [/mm]. Hab aber keine Ahnung wie ich dem Konvergenzwert ausrechnen soll. Ich denke es wird auch Null sein, da es bei paar einfachen Beispielen rauskommt [mm] \pi , \bruch{3 \pi}{2} [/mm] aber wie kann ich das allgemein hierfür ausrechnen?

Gruß

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Konvergenzwert bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:14 Mi 09.02.2011
Autor: MaTEEler


> Für welche x Konvergieren die Reihen und wogegen?
>  
> [mm]\summe_{k=1}^{ \infty} \bruch{sin(x)^n}{2+cos(x)} [/mm]
>  
> [mm]\summe_{k=1}^{ \infty} \bruch{log(x)^n}{n!} [/mm]

Ich gehe davon aus, dass die beiden Summen als Summenindex n haben, oder?! Beginnen sie denn wirklich bei n=1 oder evtl. bei n=0?

> Bei der 2ten Reihe meine ich, dass sie nur für
> [mm]\bruch{1}{e} [/mm] konvergiert und dann gegen 0, wobei das hab
> ich mir nur überlegt, nicht ausgerechnet.

Nein, das glaube ich nicht. Diese Reihe lässt sich umschreiben in die Exponentialreihe, sprich in die Reihendarstellung der e-Funktion. Gegebenenfalls müsste im Falle des Startwerts n=1 der Summand für n=0 noch ergänzt werden, um die Exponentialreihe, die von 0 bis [mm] \infty [/mm] läuft, zu erhalten. Nach umschreiben in die Exp.-reihe lässt sich die Konvergenzfrage leicht, klären, denn die Exponentialreihe konvergiert bekanntlich gegen den entsprechenden Wert der Exponentialfunktion.

> Die erste macht mir mehr Probleme. Wegen
> [mm]\bruch{a_{n+1}}{a_n}=sinx[/mm] würde ich sagen, dass diese
> Konvergiert für [mm]x \in \IR/2 \pi a[/mm] wobei [mm]a \in \IZ [/mm]. Hab
> aber keine Ahnung wie ich dem Konvergenzwert ausrechnen
> soll. Ich denke es wird auch Null sein, da es bei paar
> einfachen Beispielen rauskommt [mm]\pi , \bruch{3 \pi}{2}[/mm] aber
> wie kann ich das allgemein hierfür ausrechnen?

Die Idee mit dem Konvergenzkriterium ist schon mal nicht schlecht. Allerdings hast du dich dann etwas vertan oder nicht genau das Kriterium beachtet. Der Quotient ist richtig berechnet, aber das Kriterium besagt, dass Konvergenz nur dann vorliegt, wenn der Quotient [mm] \bruch{a_{n+1}}{a_n}=sinx \le [/mm] q < 1 ist, also es reicht nicht zu zeigen, dass [mm] \bruch{a_{n+1}}{a_n}\le1 [/mm] ist.
Somit liegt die Konvergenz für alle x vor, für die gilt [mm] sinx\le [/mm] q < 1. Das sind alle [mm] x\not=\bruch{\pi}{2}*(2a+1) [/mm] mit [mm] a\varepsilon\IZ. [/mm] Man beachte, dass das Quotientenkriterium außerdem den Betrag des Bruches betrachtet, also müssen auch die Werte ausgeschlossen werden, für die gilt sin(x)=-1.

Die x-Werte, für die sin(x)=0 gilt müssen außerdem ausgenommen werden, da das Quotientenkriterium nur für [mm] a_{n}\not=0\forall [/mm] n definiert ist. Aber dieses Sonderfall sollte leicht zu berechnen sein, schließlich sind dann alle Summanden =0.

Wie man mit elementaren Mitteln auf den Wert, gegen den die Reihe konvergiert, kommt, weiß ich allerdings momentan selber noch nicht, sorry. Aber vielleicht fällt mir (oder jemand anders) ja noch was dazu ein...


MfG,
MaTEEler

Bezug
                
Bezug
Konvergenzwert bestimmen: Konvergenzwert
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:33 Mi 09.02.2011
Autor: MaTEEler

Also mir ist jetzt doch noch eine Möglichkeit eingefallen, den Wert der Reihe zu bestimmen, und zwar mithilfe der geometrischen Reihe.
Ich rede natürlich von der Reihe mit dem Sinus.

Aus deiner Summe kannst du einen Teil rausziehen, also praktisch ausklammern, da er unabhängig ist von n. Der Rest, der dann übrig bleibt in der Summe, bildet eine geometrische Reihe á la [mm] c*\summe_{n=0}^{\infty} a^{n}. [/mm] Falls die Summe auch bei n=1 beginnt, müsste sie entsprechend um den nullten Summanden ergänzt werden.
Der Grenzwert der geometrischen Reihe sollte bekannt sein.

MfG,
MaTEEler

Bezug
                
Bezug
Konvergenzwert bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:21 Mi 09.02.2011
Autor: Karander

Ja, das mit sinus stimmt, hab es wohl gedanklich mit cos vertauscht und mit der geometrischen Reihe ist es dann wirklich banal :). Was wiederum die andere Reihe anbelangt. Würde es ok sein wenn ich sage, dass für [mm]e^x[/mm] es genau die exponetzialreihe ist und deswegen kovergiert sie für [mm]e^x[/mm] gegen [mm]e^x[/mm] oder müsste ich es irgendwie länger "gestalten"?

Bezug
                        
Bezug
Konvergenzwert bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 23:30 Mi 09.02.2011
Autor: MathePower

Hallo Karander,

> Ja, das mit sinus stimmt, hab es wohl gedanklich mit cos
> vertauscht und mit der geometrischen Reihe ist es dann
> wirklich banal :). Was wiederum die andere Reihe anbelangt.
> Würde es ok sein wenn ich sage, dass für [mm]e^x[/mm] es genau die
> exponetzialreihe ist und deswegen kovergiert sie für [mm]e^x[/mm]
> gegen [mm]e^x[/mm] oder müsste ich es irgendwie länger
> "gestalten"?


Das müsstest Du irgendwie länger gestalten.

Es ist richtig, daß die zweite Reihe, die Gestalt einer Exponentialreihe hat.
Der Exponent der Exponentialreihe stimmt mit x jedoch nicht.


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]