matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenKonvergenzverhalten von Reihen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Folgen und Reihen" - Konvergenzverhalten von Reihen
Konvergenzverhalten von Reihen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenzverhalten von Reihen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:12 Di 18.11.2008
Autor: katerkarlo

Aufgabe
Zeigen Sie, dass die Reihe [mm] \sum_{n=2}^{\infty}\frac{1}{n^2-1} [/mm] konvergiert und berechnen Sie Ihre Summe.

Tipp: Benutzen Sie [mm] \frac{1}{n^2-1} [/mm] = [mm] /frac{1}{2}(\frac{1}{n-1}-\frac{1}{n+1}) [/mm]

Ich frage mich erstmal generell nur, welche Kriterien ich anwenden kann, wenn die Reihe nicht mit Index n=0 anfängt, hier kann ich ja keine Indexverschiebung machen. Oder ist es egal, wo der Index anfängt?

        
Bezug
Konvergenzverhalten von Reihen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:21 Di 18.11.2008
Autor: abakus


> Zeigen Sie, dass die Reihe
> [mm]\sum_{n=2}^{\infty}\frac{1}{n^2-1}[/mm] konvergiert und
> berechnen Sie Ihre Summe.
>  
> Tipp: Benutzen Sie [mm]\frac{1}{n^2-1}[/mm] =
> [mm]/frac{1}{2}(\frac{1}{n-1}-\frac{1}{n+1})[/mm]
>  Ich frage mich erstmal generell nur, welche Kriterien ich
> anwenden kann, wenn die Reihe nicht mit Index n=0 anfängt,
> hier kann ich ja keine Indexverschiebung machen. Oder ist
> es egal, wo der Index anfängt?

Ignoriere das hier einfach und schreibe die ersten Summanden auf.
Wenn man den Tipp nutzt und auch die 0,5 sofort ausklammert, erhält man
0,5(1/3 - 1/5 + 1/4 - 1/6 +1/5 - 1/7 +1/6 - 1/8 ....)
Da hebt sich sehr viel auf...
Gruß Abakus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]