matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenKonvergenzverhalten der Reihe
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Folgen und Reihen" - Konvergenzverhalten der Reihe
Konvergenzverhalten der Reihe < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenzverhalten der Reihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:26 Di 19.02.2008
Autor: side

Aufgabe
Seien 0<a<b. Definiere:
[mm] u_1=1 [/mm] und [mm] u_{2k}=a*u_{2k-1} [/mm] und [mm] u_{2k+1}=u_{2k}*b [/mm] für [mm] k\ge1 [/mm]
Bestimme das Konvergenzverhalten der Reihe
[mm] \summe_{n\ge1}u_n=1+a+ab+a²b+a²b²+...+a^kb^{k-1}+a^kb^k+... [/mm]

Bei mir fehlts immer noch am Grundverständniss, wie ich die Sache angehe, um die Konvergenz zu bestimmen. Kann mir da jemand vielleicht schritt für schritt ne Anleitung geben, mit deren Hilfe ich dann an die Aufgabe rangehen soll?
Danke im Vorraus


        
Bezug
Konvergenzverhalten der Reihe: Antwort
Status: (Antwort) fertig Status 
Datum: 12:27 Di 19.02.2008
Autor: Marcel

Hallo,

ich gebe Dir mal zwei Stichworte:

1.) Wurzelkriterium

2.) Quotientenkriterium

(Beides findest Du bei Wikipedia, aber die sollten Dir geläufig sein.)

Wenn man sich das hier anguckt

> Seien 0<a<b. Definiere:
>  [mm]u_1=1[/mm] und [mm]u_{2k}=a*u_{2k-1}[/mm] und [mm]u_{2k+1}=u_{2k}*b[/mm] für

liegt das Quotientenkriterium nahe. Je nach $n$ ist hier

[mm] $\left|\frac{u_{n+1}}{u_n}\right|=a$ [/mm] oder $=b$ (was anderes kann nicht auftreten), wegen $0 < a < b$ ist daher

[mm] $\limsup_{n \to \infty} \left|\frac{u_{n+1}}{u_n}\right|=b$ [/mm]

und

[mm] $\liminf_{n \to \infty} \left|\frac{u_{n+1}}{u_n}\right|=a$ [/mm]
.
.
.

Ist also $(0 < a <) b < 1$, so folgt...

Ist also $a > 1$ (und damit auch $b > a > 1 > 0$), so folgt...

Damit sind die Fälle $b > a > 1$ und $0 < a < b < 1$ abgehandelt. Nun musst Du Dir noch was überlegen, was im Falle $0 < a [mm] \le [/mm]  1 [mm] \le [/mm] b$ gilt...

Da stellt sich nun die Frage, kann man mit dem W-Kriterium nicht vll. doch ein besseres Ergebnis erzielen, so dass man am Ende weniger "Rest"-Fälle zu untersuchen hat?

Also mal zu 1.).:
Angedeutet wurde ja hier

[mm] $\summe_{n\ge1}u_n=1+a+ab+a²b+a²b²+...+a^kb^{k-1}+a^kb^k+... [/mm] $

schon, dass gilt:

[mm] $u_{n}=\begin{cases} (ab)^{k}, & \mbox{für } n=2k+1 \mbox{ mit einem } k \in \IN_0 \\ a^k b^{k-1}, & \mbox{für } n=2k \mbox{ mit einem } k \in \IN\end{cases}$ [/mm]

(Das solltest Du übrigens z.B. per Induktion beweisen.)

Das hat hier zur Folge, dass:

[mm] $\limsup_{n \to \infty}\left|\sqrt[n]{|u_n|}\right|=\lim_{k \to \infty} \max\left\{\sqrt[2k+1]{(ab)^k}, \sqrt[2k]{a^k b^{k-1}}\right\}=\sqrt{a*b}$ [/mm]

(Die letzte Gleichheit ergibt sich i.W. aus der Stetigkeit der Exponentialfunktion und wegen [mm] $\frac{k}{2k+1} \to \frac{1}{2}$ [/mm] sowie [mm] $\frac{k}{2k}=\frac{1}{2} \to \frac{1}{2}$ [/mm] und [mm] $\frac{k-1}{2k} \to \frac{1}{2}$ [/mm] bei $k [mm] \to \infty$ [/mm] und ferner [mm] $\sqrt{ab}=(a*b)^{\frac{1}{2}}=a^{\frac{1}{2}}*b^{\frac{1}{2}}=\sqrt{a}*\sqrt{b}$.) [/mm]

Wenn also [mm] $\sqrt{a*b}<1$ [/mm] gilt, dann folgt...

(Überlege Dir übrigens:
Nach Vorr. ist $0 < a < b$, also gilt hier [mm] $\sqrt{a*b}<1 \gdw [/mm] ... [mm] \gdw [/mm] a < [mm] \frac{1}{b}$.) [/mm]

Wenn also [mm] $\sqrt{a*b}>1$ [/mm] gilt, dann folgt...

Hier bleibt nur noch eine Frage offen:
Was ist, falls [mm] $\sqrt{a*b}=1$? [/mm]

(Tipp dazu:
Nach unten abschätzen:
[mm] \sum_{n=1}^{2N+1} u_n \ge \sum_{k=1}^N (a*b)^k [/mm] und beachte, dass wegen $a*b=1$ hier dann auch gilt: [mm] $(a*b)^k=...$ [/mm] für jedes $k$.)

Übrigens:
Du siehst hier, dass man bei dem Ergebnis mit dem Wurzelkriterium eine stärkere Aussage erhält. Hier sind auch die zwei kleinen Ergebnisse, die man mittels des Quotienkriteriums berechnen kann, mit enthalten, aber es bleibt nur noch ein Fall explizit zu untersuchen, nämlich:
Der Fall $a*b=1$.

Wegen $0 < a < b$ erhält man nämlich auch die Ergebnisse, die ich zunächst mittels des (hier) naheliegenden Quotientenkriteriums errechnet habe (ich bitte Dich übrigens, die Lücken zu ergänzen).

Also:
Quotientenkriterium liegt hier nahe, aber ein "schöneres" Ergebnis erhält man hier doch mittels des Wurzelkriteriums.

Gruß,
Marcel

Bezug
        
Bezug
Konvergenzverhalten der Reihe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:50 Di 19.02.2008
Autor: angela.h.b.


>  Bei mir fehlts immer noch am Grundverständniss, wie ich
> die Sache angehe, um die Konvergenz zu bestimmen. Kann mir
> da jemand vielleicht schritt für schritt ne Anleitung
> geben, mit deren Hilfe ich dann an die Aufgabe rangehen
> soll?

Hallo,

ein allgemeingültiges Kochrezept, welches Du auf alle Reihen, die Dir begegnen, anwenden kannst, läßt sich hier nicht geben.

Wichtig ist, daß man die ganzen Kriterien einsatzbereit zur Verfügung stehen hat.

Klappt's mit dem einen nicht, nimmt man halt das nächste.

Vorlesungen, Bücher und auch die Lösungen zu Hausübungen täuschen manchmal: die Fehlversuche, bevor die präsentierten Lösungen endlich standen, die Berge von Schmierpapier, bekommst Du ja gar nicht zu sehen.

Ansonsten: üben, üben, üben, gerechnete Aufgaben nachvollziehen. Für vieles bekommt man dann einen Blick. Dafür, wo man gut dividieren kann, die Wurzel ziehen, mit welchen Minoranten die Sache läuft.
Je mehr man (aktiv) gesehen hat, auf desto mehr kann man beim nächsten Problem zurückgreifen.

Das nur als allgemeine Hinweise, wohlwissend, daß Dir das für die Bearbeitung dieser Aufgabe nichts nützt.

Gruß v. Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]