matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenKonvergenzuntersuchung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Folgen und Reihen" - Konvergenzuntersuchung
Konvergenzuntersuchung < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenzuntersuchung: Frage zur einer Reihe
Status: (Frage) beantwortet Status 
Datum: 18:14 Sa 27.06.2015
Autor: mathelernender

Aufgabe
Untersuche die folgende Reihe auf Konvergenz bzw. Divergenz. Welche Art der Konvergenz liegt vor?

[mm] \summe_{k=0}^{\infty} \bruch{(-1)^{k} 4^{2k+1}}{(2k+1)(k!)} [/mm]

Hallo,

die in der Aufgabenstellung beschriebene Reihe soll untersucht werden. Ich habe leider kaum eine Idee was ich da wirklich sinnvoll machen kann. Der alternierende Teil in der zugehörigen Folge fällt einem ja direkt auf: Daher würde ich spontan zum Leibnitzkriterium tendieren, allerdings kann man dann in der dazugehörigen Folge kaum etwas vereinfachen, ausklammern o.Ä.:

[mm] \bruch{4^{2k+1}}{(2k+1)(k!)} [/mm]

In sofern steh ich ganz schön auf dem Schlauch was man hier sinnvoll wirklich machen kann :-/.
Über Tipps würde ich mich sehr freuen! :)

        
Bezug
Konvergenzuntersuchung: Antwort
Status: (Antwort) fertig Status 
Datum: 18:35 Sa 27.06.2015
Autor: sinnlos123

Hi!

https://www.youtube.com/watch?v=eQEAuyRzFKg

Müsste also gegen 0 konvergieren, der alternierende Teil ist somit wurscht.

Bezug
                
Bezug
Konvergenzuntersuchung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:47 Sa 27.06.2015
Autor: sinnlos123

Oh, sry

Habe das Summenzeichen nicht gesehen!

Bezug
                        
Bezug
Konvergenzuntersuchung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:07 Sa 27.06.2015
Autor: hippias

Das ist keine Frage, weshalb ich den Typ auf Mitteilung umgestellt habe.

Bezug
        
Bezug
Konvergenzuntersuchung: Antwort
Status: (Antwort) fertig Status 
Datum: 19:07 Sa 27.06.2015
Autor: hippias

Verwende Wurzel- oder Quotientenkriterium.

Bezug
                
Bezug
Konvergenzuntersuchung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:13 Sa 27.06.2015
Autor: mathelernender

Mit dem Quotientenkriterium komme ich auf 0, also 0 < 1, damit ist das ganze Konvergent.

Die Rechnung ist bissel technisch, bis ich die ordentlich abgeschrieben habe...usw ;-)

Ich denke das passt hier. Hab mich zu sehr auf den Leibniz versteift...

Bezug
                        
Bezug
Konvergenzuntersuchung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:12 So 28.06.2015
Autor: hippias

Das Leibniz-Kriterium geht ja auch sehr gut. Aber wenn man mit einer Sache nicht weiterkommt, muss man eben etwas anderes probieren. Es ist ja [mm] $4^{2k+1}= 4\cdot 16^{k}$. [/mm] Ab $k=16$ waechst der Nenner des Bruchs [mm] $\frac{16^{k}}{k!}$ [/mm] staerker als der Zaehler. Daher liegt eine Nullfolge vor.  

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]