matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenKonvergenzradius hyperb. Fkt.
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Folgen und Reihen" - Konvergenzradius hyperb. Fkt.
Konvergenzradius hyperb. Fkt. < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenzradius hyperb. Fkt.: hilfestellung zur lösung
Status: (Frage) beantwortet Status 
Datum: 16:02 Do 19.11.2009
Autor: darkrain

hallo nochmal an alle,

also der konvergenzradius soll für diese hyperbolischen funktionen ausgerechnet werden:

sin h (x)=  [mm] \summe_{n=0}^{\infty} \bruch{x^2^n^+^1}{(2n+1)!} [/mm]

cos h (x) = [mm] \summe_{n=0}^{\infty} \bruch{x^2^m}{(2m)!} [/mm]

so , ich weiß dass die beiden sin h (x) und cos h (x) exp (x) ergeben.

ich weiß nicht, wie ich hier am besten anfangen soll :-(

lieben gruß


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Konvergenzradius hyperb. Fkt.: Antwort
Status: (Antwort) fertig Status 
Datum: 16:15 Do 19.11.2009
Autor: fred97

Nehmen wir uns mal den cosh vor. Klar ist, dass die zugeh. Potenzreihe für x=0 konv.

Für x [mm] \not= [/mm] 0 setze [mm] a_n:= \bruch{x^{2n}}{(2n)!} [/mm]

überzeuge Dich davon, dass  [mm] $|\bruch{a_{n+1}}{a_n}| \to [/mm] 0  (für n [mm] \to \infty) [/mm]

Was sagt das Quotientenkriterium dazu ?

FRED

Bezug
                
Bezug
Konvergenzradius hyperb. Fkt.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:55 Do 19.11.2009
Autor: darkrain

wenn ich das quotientenkriterum anwende habe ich stehen:

...  = [mm] \bruch{(2n) ! * x^2^n^+^1 }{x^2^n * (2(n+1))!} [/mm]
     =  [mm] \bruch{(2n) ! * x^1 }{(2(n+1))!} [/mm]
     = [mm] \bruch{(2n) ! * x^1 }{(2n+2)!} [/mm]

jetzt habe ich etwas probleme mit dem kuerzen....
      =  [mm] \bruch{ x^}{(2n+2)} [/mm]

darf ich in dem fall ueberhaupt (2n)! und (2n+1)! kuerzen ?



Bezug
                        
Bezug
Konvergenzradius hyperb. Fkt.: Antwort
Status: (Antwort) fertig Status 
Datum: 17:00 Do 19.11.2009
Autor: fred97


> wenn ich das quotientenkriterum anwende habe ich stehen:
>  
> ...  = [mm]\bruch{(2n) ! * x^2^n^+^1 }{x^2^n * (2(n+1))!}[/mm]
>      
> =  [mm]\bruch{(2n) ! * x^1 }{(2(n+1))!}[/mm]
> = [mm]\bruch{(2n) ! * x^1 }{(2n+2)!}[/mm]
>  
> jetzt habe ich etwas probleme mit dem kuerzen....

Das merke ich


> =  [mm]\bruch{ x^}{(2n+2)}[/mm]

Wenn Du richtig kürzt bleibt

            
[mm]\bruch{ x^2}{(2n+1)(2n+2)}[/mm]


FRED


>  
> darf ich in dem fall ueberhaupt (2n)! und (2n+1)! kuerzen
> ?
>  
>  


Bezug
                                
Bezug
Konvergenzradius hyperb. Fkt.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:17 Do 19.11.2009
Autor: darkrain

okay, dann habe ich raus :

[mm] \limes_{n\rightarrow\infty} \bruch{x^2}{4n^2 + 6n + 2} [/mm] =da der untere Term gegen unendlich geht, geht der gesamte term gegen 0,

aber es sollte doch unendlich raus kommen ? :

aber du hattest gesagt:


Ist p = 0, so ist der Konvergenzradius der Potenzreihe =  [mm] \infty. [/mm]

also muesste es stimmen :)

Bezug
                                        
Bezug
Konvergenzradius hyperb. Fkt.: Antwort
Status: (Antwort) fertig Status 
Datum: 17:19 Do 19.11.2009
Autor: fred97


> okay, dann habe ich raus :
>  
> [mm]\limes_{n\rightarrow\infty} \bruch{x^2}{4n^2 + 6n + 2}[/mm] =da
> der untere Term gegen unendlich geht, geht der gesamte term
> gegen 0,


Was sagt das Quotientenkriterium dazu ?

FRED


>  
> aber es sollte doch unendlich raus kommen ? :
>  
> aber du hattest gesagt:
>  
>
> Ist p = 0, so ist der Konvergenzradius der Potenzreihe =  
> [mm]\infty.[/mm]
>
> also muesste es stimmen :)


Bezug
                                                
Bezug
Konvergenzradius hyperb. Fkt.: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 17:34 Do 19.11.2009
Autor: darkrain

ist das nun falsch ?

das q. kriterium sagt aus, dass die folge bei <1 konvergiert und bei >1 divergiert .

Bezug
                                                        
Bezug
Konvergenzradius hyperb. Fkt.: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:20 Do 19.11.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]