Konvergenzradius < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Sei [mm] a_n [/mm] eine Folge nicht-negativer Zahlen mit $ [mm] (a_n)^{\bruch{1}{n}}\to [/mm] L $ wenn [mm] n\to\infty [/mm] . Beweisen Sie, dass der Konvergenzradius der Potenzreihe [mm] \summe_{n=0}^{\infty}a_n*z^n [/mm] für [mm] z\in\IC\ \bruch{1}{L} [/mm] ist. |
Hallo,
meine Beweisidee war die folgende.
$ [mm] lim_{n\to\infty} (a_n)^{\bruch{1}{n}}=L [/mm] $ . Daraus folgt aus den Sätzen über konvergente Folgen (hier [mm] lim_{n\to\infty}a_n*b_n=A*B, [/mm] wenn [mm] a_n\to [/mm] A und [mm] b_n\to [/mm] B), dass [mm] a_n\to L^n [/mm] für [mm] n\to\infty [/mm] .
Betrachten wir nun [mm] lim_{n\to\infty}\left|\bruch{a^{n+1}z^{n+1}}{a_{n}*z^{n}}\right|=\left|\bruch{a_{n+1}}{a_{n}}*z\right|
[/mm]
Unter Benutzung der Grenzwertsätze ist [mm] lim_{n\to\infty}\bruch{a_n}{b_n}=\bruch{A}{B}. [/mm] Also ist [mm] lim_{n\to\infty}\left|\bruch{a_{n+1}}{a_{n}}*z\right|=|L*z|
[/mm]
$ |L*z|<1 $ [mm] \Rightarrow |z|<\bruch{1}{L} [/mm] , womit der Konvergenzradius [mm] R=\bruch{1}{L} [/mm] ist.
Könnte man das so zeigen ?
Lg
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 13:12 Fr 23.04.2010 | Autor: | fred97 |
> Sei [mm]a_n[/mm] eine Folge nicht-negativer Zahlen mit
> [mm](a_n)^{\bruch{1}{n}}\to L [/mm] wenn [mm]n\to\infty[/mm] . Beweisen Sie,
> dass der Konvergenzradius der Potenzreihe
> [mm]\summe_{n=0}^{\infty}a_n*z^n[/mm] für [mm]z\in\IC \bruch{1}{L}[/mm]
> ist.
> Hallo,
>
> meine Beweisidee war die folgende.
>
> [mm]lim_{n\to\infty} (a_n)^{\bruch{1}{n}}=L[/mm] . Daraus folgt aus
> den Sätzen über konvergente Folgen (hier
> [mm]lim_{n\to\infty}a_n*b_n=A*B,[/mm] wenn [mm]a_n\to[/mm] A und [mm]b_n\to[/mm] B),
> dass [mm]a_n\to L^n[/mm] für [mm]n\to\infty[/mm] .
Das ist doch Unsinn ! In Deinem Grenzwert Kommt ja noch n vor!
> Betrachten wir nun
> [mm]lim_{n\to\infty}\left|\bruch{a^{n+1}z^{n+1}}{a_{n}*z^{n}}\right|=\left|\bruch{a_{n+1}}{a_{n}}*z\right|[/mm]
> Unter Benutzung der Grenzwertsätze ist
> [mm]lim_{n\to\infty}\bruch{a_n}{b_n}=\bruch{A}{B}.[/mm] Also ist
> [mm]lim_{n\to\infty}\left|\bruch{a_{n+1}}{a_{n}}*z\right|=|L*z|[/mm]
>
> [mm]|L*z|<1[/mm] [mm]\Rightarrow |z|<\bruch{1}{L}[/mm] , womit der
> Konvergenzradius [mm]R=\bruch{1}{L}[/mm] ist.
>
> Könnte man das so zeigen ?
Nein ! Betrachte [mm] \limes_{n\rightarrow\infty}\wurzel[n]{|a_nz^n|} [/mm]
FRED
>
> Lg
|
|
|
|
|
Okay, danke für die antwort. Also andersrum :)
Da [mm] a_n^{1/n}\to [/mm] L für [mm] n\to\infty [/mm] , folgt, dass [mm] \forall 0<\epsilon
Sei nun [mm] z\in\IC [/mm] so dass [mm] |z|<\bruch{1}{L+\epsilon} [/mm] und sei [mm] r=|z|*(L+\epsilon)<1 [/mm] dann folgt aus (1), dass [mm] |a_n*z^n|
Ist es das, was du meintest ?
Lg
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 14:12 Fr 23.04.2010 | Autor: | fred97 |
Warum so kompliziert ?
Es ist $ [mm] \limes_{n\rightarrow\infty}\wurzel[n]{|a_nz^n|}=L|z| [/mm] $
Nach dem Wurzelkriterium haben wir konvergenz, wenn $L|z|<1$, also wenn $|z|<1/L$ und wir haben Divergenz für $|z|>1/L$
FRED
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 14:28 Fr 23.04.2010 | Autor: | MontBlanc |
hi fred,
wir haben das wurzelkriterium in der vorlesung nicht definiert, deswegen hab ichs nicht genutzt, aber gut zu wissen!
danke dir.
lg
|
|
|
|