matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe AnalysisKonvergenzradius
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Komplexe Analysis" - Konvergenzradius
Konvergenzradius < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenzradius: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:26 So 21.10.2007
Autor: ueberforderter_Ersti

Aufgabe
Die Reihe [mm] \summe a_{k}z^{k} [/mm] hat einen Konvergenzradius >0.
Bestimme den Konvergenzradius der Reihe [mm] \summe a_{k}z^{2k} [/mm]

Hey zusammen!
Ich bin gerade an folgender Aufgabe.. Leider weissich nicht genau, wie ich aus den vorgegebenen Infos die Aufgabe angehen soll!
Ich weiss, dass die obere Reihe einen positiven Konvergenzradius hat. Da habe ich schon die erste Unklarheit: heisst das sie konvergiert für alle positiven Konvergenzradien?
Dann gibt es auch keinerlei Angaben zu z und a, wobei z ziemlich sicher eine komplexe Zahl ist..

Also ich würde evt mal schauen in wie fern die bekannte reihe in der neuen enthalten ist.. Also sehe ich, dass jedes Glied der Reihe eifach noch zusätzlich mit [mm] z^{k} [/mm] multipliziert wird.. Nur kann ich mir unter [mm] z^{k}wenig [/mm] vorstellen (<1 oder >1.. positiv oder negativ..)

Wie ihr seht komme ich nicht wirklich vorwärts.. Wäre sehr froh um einen Tipp! Vielen lieben Dank, Ersti

        
Bezug
Konvergenzradius: Hinweis
Status: (Antwort) fertig Status 
Datum: 17:32 So 21.10.2007
Autor: Loddar

Hallo überforderter Ersti!


Die Aussage "Konvergenzradius  [mm] $r_1 [/mm] > 0$" besagt lediglich, dass dieser auch wirklich existiert, und es nicht gilt: [mm] $r_1 [/mm] \ = \ 0$ .

Der Konvergenzradius [mm] $r_2$ [/mm] der 2. Reihe berechnet sich wegen [mm] $\summe a_{k}*z^{\red{2}*k} [/mm] \ = \ [mm] \summe a_{k}*\left(z^{\red{2}}\right)^k$ [/mm] zu [mm] $r_2 [/mm] \ = \ [mm] \wurzel[\red{2}]{r_1}$ [/mm] .


Gruß
Loddar


Bezug
                
Bezug
Konvergenzradius: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:56 So 21.10.2007
Autor: ueberforderter_Ersti

Vielen dank für den tipp!!
Nun wenn du [mm] \summe a_{k}(z^{2})^{k} [/mm] hast gibt das [mm] \wurzel{r_{1}} [/mm] als Konvergenzradius.. Ich verstehe dann ,leider nicht ganz wie du darauf kommst..
Wenn ich das nun mit einem anderen Beispiel nachzuvollziehen versuche:
[mm] \summe (a_{k})^{2}z^{k} [/mm] hier wird das ganze einfach ein 2.Mal mit dem Skalar [mm] a_{k} [/mm] multipilziert.. Wäre das dann [mm] \bruch{r_{1}}{a_{k}}? [/mm]
lg ersti

Bezug
                        
Bezug
Konvergenzradius: Antwort
Status: (Antwort) fertig Status 
Datum: 20:44 So 21.10.2007
Autor: rainerS

Hallo!

>  Nun wenn du [mm]\summe a_{k}(z^{2})^{k}[/mm] hast gibt das
> [mm]\wurzel{r_{1}}[/mm] als Konvergenzradius.. Ich verstehe dann
> ,leider nicht ganz wie du darauf kommst..

Der Konvergenzradius [mm]r_1[/mm] einer Reihe bedeutet, dass die Reihe für [mm]|z|r_1[/mm] divergiert. Wenn also
[mm]\summe_{i=0}^\infty a_k z^k[/mm]

den Konvergenzradius [mm]r_1[/mm] hat, dann konvergiert die Reihe
[mm]\summe_{i=0}^\infty a_{k}(z^{2})^{k}[/mm]

für [mm]|z^2|r_1[/mm]. Mit anderen Worten: sie konvergiert für [mm]|z|<\sqrt{r_1}[/mm] und divergiert für [mm]|z|>\sqrt{r_1}[/mm]. Also ist der Konvergenzradius [mm]\sqrt{r_1}[/mm].


>  Wenn ich das nun mit einem anderen Beispiel
> nachzuvollziehen versuche:
>  [mm]\summe (a_{k})^{2}z^{k}[/mm] hier wird das ganze einfach ein
> 2.Mal mit dem Skalar [mm]a_{k}[/mm] multipilziert.. Wäre das dann
> [mm]\bruch{r_{1}}{a_{k}}?[/mm]

Was meinst du? Multiplizierst du jeden Term mit der gleichen Zahl? Dann darfst du nicht [mm]a_k[/mm] schreiben, denn k ist dein Summationsindex. Wenn du jeden Term mit der Zahl b multiplizierst, dann ändert sich der Konvergenzradius nicht.

Oder meinst du, dass du in jedem Summanden den Koeffizienten quadrierst? (Dann ergibt es keinen Sinn, außerhalb der Summe von [mm]a_k[/mm] zu sprechen.) In diesem Fall ist der Konvergenzradius [mm]r_1^2[/mm]. Das ist nicht so einfach nachzuweisen wie im ersten Fall, folgt aber aus der []Formel von Cauchy-Hadamard.

Viele Grüße
   Rainer

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]