matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionalanalysisKonvergenzradius
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Funktionalanalysis" - Konvergenzradius
Konvergenzradius < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenzradius: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 08:43 Do 10.05.2007
Autor: blinktea

Aufgabe
Die Potenzreihe [mm] f(z)=\summe_{n=0}^{\infty} a_nz^n [/mm] habe den Konvergenzradius R>1, und es gebe ein [mm] k\in \IN_o [/mm] mit [mm] |a_k|=1. [/mm] Zeige: Es existiert ein [mm] z_o \in S^1 [/mm] mit [mm] |f/z_o)|\ge1. [/mm]

in einem satz habe ich folgendes gefunden:

[mm] a_r^k=1/2 \pi \integral_{0}^{2\pi}{f(a+re^{it})e^{-ikt}\ dt} [/mm]
für alle K=0,1,2...Speziell für k=0 erhält man daraus wegen [mm] a_0=f(a) [/mm] die folgende 'Mittelpunktseigenschaft einer analytischen Funktion':
[mm] f(a)=1/2\pi \integral_{0}^{2\pi}{f(a+re^{it})\ dt}. [/mm] Bezeichnet man für beliebiges r mit 0<r<R das Maximum, welches die stetige Funktion |f| auf der Kreislinie |z-a|=r annimt, mit [mm] M=M_r=max{|f(z)|;|z-a|=r}, [/mm] so gelten für alle k=0,1,2...'Cauchy Abschätzungsformlen':
[mm] |a_k| \le M/r^k [/mm]

also diesen satz kann ich doch bestimmt irgendwie anwenden, vielleicht ist es auch total offensichtlich, leider sehe ich das nicht. deswegen wäre ich sehr dankbar wenn mir jemand sagen könnte wie ich das mit diesem satz angehen könnte...:)

        
Bezug
Konvergenzradius: Antwort
Status: (Antwort) fertig Status 
Datum: 11:24 Do 10.05.2007
Autor: felixf

Hallo!

> Die Potenzreihe [mm]f(z)=\summe_{n=0}^{\infty} a_nz^n[/mm] habe den
> Konvergenzradius R>1, und es gebe ein [mm]k\in \IN_o[/mm] mit
> [mm]|a_k|=1.[/mm] Zeige: Es existiert ein [mm]z_o \in S^1[/mm] mit
> [mm]|f/z_o)|\ge1.[/mm]

>

>  in einem satz habe ich folgendes gefunden:
>  
> [mm]a_r^k=1/2 \pi \integral_{0}^{2\pi}{f(a+re^{it})e^{-ikt}\ dt}[/mm]
>  
> für alle K=0,1,2...

du meinst [mm] $a_k [/mm] = [mm] \frac{1}{2 \pi i} \int_0^{2\pi} [/mm] f(a + r [mm] e^{it}) e^{-ikt} \; [/mm] dt$, oder? Das ist die Cauchysche Integralformel. Und damit kommst du auch schon recht weit:

Damit ist naemlich $1 = [mm] |a_k| [/mm] = [mm] \frac{1}{2 \pi} \left| \int_0^{2\pi} f(a + r e^{it}) e^{-ikt} \; dt \right| \ge \frac{1}{2 \pi} \cdot [/mm] 2 [mm] \pi \sup_{t \in [0, 2 \pi]} [/mm] |f(a + r [mm] e^{i t}) e^{-i k t}| [/mm] = [mm] \sup_{t \in [0, 2 \pi]} [/mm] |f(a + r [mm] e^{i t})|$. [/mm]

Und jetzt bist du im Prinzip fertig...

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]