matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe AnalysisKonvergenzradien bestimmen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Komplexe Analysis" - Konvergenzradien bestimmen
Konvergenzradien bestimmen < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenzradien bestimmen: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 13:30 Di 17.05.2011
Autor: Rubstudent88

Aufgabe 1
a) Bestimmen Sie eine um 0 definierte konvergenze Potenzreiche p(z) mit
[mm] \bruch{1}{z^{2}+az+b}=\summe_{n=0}^{\infty}a_{n}z^{n}=p(z), [/mm] b [mm] \not= [/mm] 0.
Bestimmen Sie den Konvergenzradius von p(z).

Aufgabe 2
b) Es sei [mm] z_{0} \in \IC, [/mm] so dass [mm] z_{0} [/mm] die Gleichung [mm] z^{2}+az+b=0 [/mm] nicht erfüllt. Weiterhin sei q(z) eine um [mm] z_{0} [/mm] definierte konvergenze Potenzreihe mit
[mm] \bruch{1}{z^{2}+az+b}=\summe_{n=0}^{\infty}b_{n}(z-z_{0})^{n}=q(z). [/mm]
Bestimmen Sie den Konvergenzradius von q(z).

Hallo zusammen,

ich bräuchte zur obigen Aufgabe erneut eure Hilfe :).

Zu Aufgabe a):

Hier bräuchte ich einen Ansatz: Meine Überlegung ist, dass [mm] (1-z)^{2}=1-2z+z^{2} [/mm] (Potenzreihe würde sich über das Cauchyprodukt errechnen lassen). Das würde von der Form wie die Aufgabe oben aussehen, aber ich schätze mal, ich muss hier mehrüberlegen muss?


Zu Aufgabe b):
Zur Bestimmung des onvergenzradius muss ich wissen, wie  [mm] b_{n} [/mm] aussieht. Wenn ich herausgefunden habe, so habe ich den Tipp bekommen, dass die Partialbruchzerlegung hilfreich sein könnte.

Beste Grüße

        
Bezug
Konvergenzradien bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:48 Di 17.05.2011
Autor: fred97

Zu beiden Aufgaben: es ist nur verlangt, den jeweiligen Konvergenzradius zu bestimmen. Die Koeffizienten [mm] a_n [/mm] bzw. [mm] b_n [/mm] sind nicht gefragt.


Kommen wir gleich zu b), denn a) ist ein Spezialfall von b)

Seien [mm] z_1 [/mm] und [mm] z_2 [/mm] die Nullstellen des Polynoms $ [mm] z^{2}+az+b [/mm] $ und es sei

             $f(z):= [mm] \bruch{1}{z^2+az+b}$ [/mm]  für $z [mm] \in [/mm] D = [mm] \IC \setminus \{z_1,z_2 \}$ [/mm]

f ist auf D holomorph. Ist nun [mm] $z_0 \in [/mm] D$, so gilt:


          
          (*)    $ [mm] f(z)=\summe_{n=0}^{\infty}b_{n}(z-z_{0})^{n} [/mm] $  für [mm] $|z-z_0|
wobei R der Radius der größten offenen Kreischeibe um [mm] z_0 [/mm] ist, die noch in D hineinpasst. (das hattet Ihr in der Vorlesung).

So, nun male Dir in die komplexe Ebene die Punkte [mm] z_1,z_2 [/mm] und [mm] z_0 [/mm] . Dann siehst Du sofort, wie sich der Konvergenzradius R der obigen Potenzreihe durch  [mm] z_1,z_2 [/mm] und [mm] z_0 [/mm] ausdrücken lässt.

Bei dieser Aufgabe muß man gar nichts rechnen !!!  

FRED



Bezug
                
Bezug
Konvergenzradien bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:07 Di 17.05.2011
Autor: Rubstudent88

Hallo fred,

danke für deine gewohnte Blitzantwort :).

Irgendwie sehe ich noch nicht sofort, wie sich R ausdrücken lässt. Ich habe ein [mm] z_{0} [/mm] was im Defintionsbereich liegt, [mm] z_{1} [/mm] und [mm] z_{2} [/mm] liegen nicht in diesem.

Dann male ich komplexe Ebene, [mm] z_{0} [/mm] liegt innerhalb der Kreisscheibe, [mm] z_{1} [/mm] und [mm] z_{2} [/mm] außerhalb. [mm] R=z_{0}-z_{1} [/mm]  bzw. - [mm] z_{2}? [/mm]

Beste Grüße

Bezug
                        
Bezug
Konvergenzradien bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:24 Di 17.05.2011
Autor: fred97


> Hallo fred,
>  
> danke für deine gewohnte Blitzantwort :).
>  
> Irgendwie sehe ich noch nicht sofort, wie sich R
> ausdrücken lässt. Ich habe ein [mm]z_{0}[/mm] was im
> Defintionsbereich liegt, [mm]z_{1}[/mm] und [mm]z_{2}[/mm] liegen nicht in
> diesem.
>
> Dann male ich komplexe Ebene, [mm]z_{0}[/mm] liegt innerhalb der
> Kreisscheibe, [mm]z_{1}[/mm] und [mm]z_{2}[/mm] außerhalb. [mm]R=z_{0}-z_{1}[/mm]  
> bzw. - [mm]z_{2}?[/mm]

Mann, mann. Was habe ich geschrieben ? Und was hast Du in der Vorlesung gelernt:

        .......R der Radius der größten offenen Kreischeibe um $ [mm] z_0 [/mm] $ ist, die noch in D hineinpasst.......


Wenn Du gemalt hättest (was ich einwenig bezweifele !), dann hättest Du doch ablesen müssen:

         $R= min [mm] \{|z_1-z_0|, |z_2-z_0| \}$ [/mm]

FRED

>  
> Beste Grüße


Bezug
                                
Bezug
Konvergenzradien bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:33 Di 17.05.2011
Autor: Rubstudent88

Hallo Fred,

danke für deine Ausführungen. Ich hatte es durchaus gezeichnet, nur ich glaube nicht so, wie du es meintest. Erst beim nochmaligen Zeichnen ist mir klar geworden, worauf du hinaufwolltest :).

Zurück zur Aufgabe:
Damit habe ich mit 1/R den Konvergenzradius zu b? Was muss ich dann bei der a) noch machen?



Bezug
                                        
Bezug
Konvergenzradien bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 10:16 Mi 18.05.2011
Autor: fred97


> Hallo Fred,
>  
> danke für deine Ausführungen. Ich hatte es durchaus
> gezeichnet, nur ich glaube nicht so, wie du es meintest.
> Erst beim nochmaligen Zeichnen ist mir klar geworden,
> worauf du hinaufwolltest :).
>  
> Zurück zur Aufgabe:
>  Damit habe ich mit 1/R den Konvergenzradius zu b?

Nein. Der Konvergenzradius ist R

>  Was muss
> ich dann bei der a) noch machen?

Nichts mehr. Hier ist einfach nur [mm] z_0=0 [/mm]

FRED

>  
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]