matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenKonvergenzradien bestimmen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Folgen und Reihen" - Konvergenzradien bestimmen
Konvergenzradien bestimmen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenzradien bestimmen: Korrektur, Rückfrage
Status: (Frage) beantwortet Status 
Datum: 23:33 Di 05.01.2016
Autor: Struppi21

Aufgabe
Berechnen Sie die Konvergenzradien der folgenden Reihen.

1) [mm] \summe_{k=0}^{\infty} (4+i^{k})^{k} [/mm] * [mm] z^{k} [/mm]
2) [mm] \summe_{k=0}^{\infty} (\bruch{k*2^{k}-3^{k}}{k^{2}+2^{k}}) [/mm] * [mm] z^{k} [/mm]
3) [mm] \summe_{k=1}^{\infty} k!*(z+2-\wurzel{2}*i)^{k} [/mm]
4) [mm] \summe_{k=1}^{\infty} (\bruch{1}{4}(z^{2}-2z+1))^{k} [/mm]

Hallo liebes Forum, ich brauche hier wieder etwas Hilfe. Eigentlich hab ich ein paar Ansätze bin mir aber bei manchen Sachen unsicher. Geht also eher darum ein paar Tipps zu geben, bzw. auf Fehler hinzuweisen.


1) Ich weiss das [mm] i^{k} [/mm] periodisch ist (in 4er Schritten) also gilt mit der Cauchy-Hadamard Formel:
[mm] \bruch{1}{\limsup_{k\rightarrow\infty} |4+1|^{k*1/k}} [/mm] = 1/5

2) Hier fehlt mir leider etwas Übersicht, ich weiss ich muss den Wert von:
[mm] \limes_{n\rightarrow\infty} |\bruch{a_{n}}{a_{n+1}}| [/mm]
ausrechnen. Ich hab etwas mit Calc rumprobiert und es scheint gegen 2/3 zu laufen, allerdings krieg ich das nicht formal aufgeschrieben. Kann mir hier eventuell wer weiterhelfen?

3) Das ist der Konverganzradius im Entwicklungspunkt z0 = -2 + [mm] \wurzel{2}*i [/mm]
Es gilt:
[mm] \bruch{1}{\limsup_{k\rightarrow\infty} |k!|^{1/k}} [/mm] = [mm] 1/\infty [/mm] = 0

4) [mm] \summe_{k=1}^{\infty} (\bruch{1}{4}(z^{2}-2z+1))^{k} [/mm] = [mm] \summe_{k=1}^{\infty}(\bruch{1}{4})^{k}(z-1)^{2k} [/mm]

Dann kann ich wieder die Cauchy-Hadamard Formel anwenden, allerdings die 2k-te Wurzel anstelle der k-ten Wurzel ziehen. Bei diesem Punkt bin ich unsicher, er erscheint logisch  aber in der Vorlesung haben wir sowas leider noch nicht gesehen.

Also er halte ich:
[mm] \bruch{1}{\limes_{k\rightarrow\infty} |1/4|^{k/2k}} [/mm] =  [mm] \wurzel{4}=2 [/mm]



        
Bezug
Konvergenzradien bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 09:43 Mi 06.01.2016
Autor: Gonozal_IX

Hiho,

> 1) Ich weiss das [mm]i^{k}[/mm] periodisch ist (in 4er Schritten)
> also gilt mit der Cauchy-Hadamard Formel:
>  [mm]\bruch{1}{\limsup_{k\rightarrow\infty} |4+1|^{k*1/k}}[/mm] =
> 1/5

[ok]

> 2) Hier fehlt mir leider etwas Übersicht, ich weiss ich
> muss den Wert von:
>  [mm]\limes_{n\rightarrow\infty} |\bruch{a_{n}}{a_{n+1}}|[/mm]

Na du musst gar nichts. Du kannst es auch mit der gleichen Formel wie vorher machen.
Aber wir nehmen mal an, du willst es mit obiger Formel zeigen, dann:
Sauber aufschreiben, Doppelbruch auflösen, im Zähler [mm] 3^k [/mm] und [mm] 2^{k+1} [/mm] ausklammern, im Nenner [mm] 3^{k+1} [/mm] und [mm] $2^k$. [/mm]
Kürzen, Grenzwert bilden, fertig :-)

> 3) Das ist der Konverganzradius im Entwicklungspunkt z0 =
> -2 + [mm]\wurzel{2}*i[/mm]
>  Es gilt:
>  [mm]\bruch{1}{\limsup_{k\rightarrow\infty} |k!|^{1/k}}[/mm] =
> [mm]1/\infty[/mm] = 0

Was du vermutlich meinst, ist: Der Konvergenzradius für [mm] $\tilde{z} [/mm] = z -2 + [mm] \wurzel{2}*i$ [/mm] ist Null.
Insofern: [ok]


> 4) [mm]\summe_{k=1}^{\infty} (\bruch{1}{4}(z^{2}-2z+1))^{k}[/mm] =
> [mm]\summe_{k=1}^{\infty}(\bruch{1}{4})^{k}(z-1)^{2k}[/mm]
>  
> Dann kann ich wieder die Cauchy-Hadamard Formel anwenden,
> allerdings die 2k-te Wurzel anstelle der k-ten Wurzel
> ziehen. Bei diesem Punkt bin ich unsicher, er erscheint
> logisch  aber in der Vorlesung haben wir sowas leider noch
> nicht gesehen.
>  
> Also er halte ich:
>  [mm]\bruch{1}{\limes_{k\rightarrow\infty} |1/4|^{k/2k}}[/mm] =  
> [mm]\wurzel{4}=2[/mm]

[ok]
Um das besser zu sehen forme noch wie folgt um:
$ [mm] \summe_{k=1}^{\infty}(\bruch{1}{4})^{k}(z-1)^{2k} [/mm] = [mm] \summe_{k=1}^{\infty}(\bruch{1}{2})^{2k}(z-1)^{2k}$ [/mm]

Jetzt motiviert sich auch die Verwendung von 2k anstatt k in der Formel.

Alternativ kann du auch hier wieder wie folgt vorgehen:
$ [mm] \summe_{k=1}^{\infty}(\bruch{1}{4})^{k}(z-1)^{2k} [/mm] = [mm] \summe_{k=1}^{\infty}(\bruch{1}{4})^{k}((z-1)^2)^{k}$ [/mm]

Setze [mm] $\tilde{z} [/mm] = [mm] (z-1)^2$ [/mm] und du erhältst einen Konvergenzradius für [mm] \tilde{z} [/mm] von 4, demzufolge einen für |z-1| von 2.
Das erklärt, warum die Verwendung der Formel von Cauchy-Hadamard mit 2k in Ordnung ist. Weil du halt erst die k-te Wurzel betrachtest um dann später nochmal die Wurzel zu ziehen. Insgesamt halt die 2k-te Wurzel.

Gruß,
Gono


Bezug
                
Bezug
Konvergenzradien bestimmen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:20 Mi 06.01.2016
Autor: Struppi21

Hi, danke für die Hilfe :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]