matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationKonvergenzradien
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Integration" - Konvergenzradien
Konvergenzradien < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenzradien: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:35 Mi 10.08.2011
Autor: natascha

Aufgabe
Bitte berechnen Sie den Konvergenzradius:
[mm] \summe_{i=1}^{n}\bruch{1}{n}(2x)^{n} [/mm]

Guten Abend,

Ich bin an dieser (und anderen) Aufgaben zum Konvergenzradius. Erstmal eine allgemeine Frage:
Habe ich es richtig verstanden, dass man entweder mit
r= [mm] \bruch{1}{\limes_{n\rightarrow\infty}(\wurzel{a_{n})}} [/mm]
berechnen kann (geht immer)
oder mit
r = [mm] \limes_{n\rightarrow\infty} (\bruch{a_{n}}{a_{n+1}}) [/mm]
jedoch nur, falls ab einem bestimmten Index [mm] a_{n} [/mm] alle verschieden von 0 sind?
Sind das alle Möglichkeiten, oder gibt es noch andere? Woran erkennt man, welche man benutzen muss?

Jetzt zu meiner Aufgabe:
Bis jetzt habe ich folgendes:
- Umformen: [mm] \summe_{i=1}^{n}1/n(2x)^{n} [/mm] = [mm] \summe_{i=1}^{n}\bruch{1}{n}2^{n}x^{n} [/mm] und somit ist [mm] a_{n} [/mm] = [mm] \bruch{1}{n}2^{n} [/mm]
Ich setze dann ein in
r = [mm] \limes_{n\rightarrow\infty} (\bruch{a_{n}}{a_{n+1}}) [/mm]
und erhalte:
[mm] \limes_{n\rightarrow\infty} \bruch{2^{n}}{n}\bruch{n+1}{2^{n+1}} [/mm] = [mm] \limes_{n\rightarrow\infty} \bruch{n+1}{2n} [/mm]
Das hilft mir leider nicht weiter, weil soweit ich weiss ist der Limes von unendlich über unendlich nicht definiert...
Ist das sonst soweit richtig?

Vielen Dank für Hilfe!

Liebe Grüsse,
Natascha

        
Bezug
Konvergenzradien: Antwort
Status: (Antwort) fertig Status 
Datum: 21:59 Mi 10.08.2011
Autor: Schadowmaster


> Bitte berechnen Sie den Konvergenzradius:
>  [mm]\summe_{i=1}^{n}\bruch{1}{n}(2x)^{n}[/mm]

"Bitte" in der Aufgabenstellung...
Ich beginne an gewissen Grundfesten der Welt zu zweifeln. xD

>  Guten Abend,
>  
> Ich bin an dieser (und anderen) Aufgaben zum
> Konvergenzradius. Erstmal eine allgemeine Frage:
>  Habe ich es richtig verstanden, dass man entweder mit
>  r= [mm]\bruch{1}{\limes_{n\rightarrow\infty}(\wurzel[\red{n}]{a_{n})}}[/mm]
>  berechnen kann (geht immer)

da fehlte ein n

>  oder mit
> r = [mm]\limes_{n\rightarrow\infty} (\bruch{a_{n}}{a_{n+1}})[/mm]
>  
> jedoch nur, falls ab einem bestimmten Index [mm]a_{n}[/mm] alle
> verschieden von 0 sind?
>  Sind das alle Möglichkeiten, oder gibt es noch andere?

Ich kenn keine anderen und bei Wiki stehen auch keine.
Heißt also es mag andere geben, aber die mit Abstand wichtigsten sind diese beiden.

> Woran erkennt man, welche man benutzen muss?

Die Aufgabe hast du dir schon selbst beantwortet, siehe unten.^^

> Jetzt zu meiner Aufgabe:
>  Bis jetzt habe ich folgendes:
>  - Umformen: [mm]\summe_{i=1}^{n}1/n(2x)^{n}[/mm] =
> [mm]\summe_{i=1}^{n}\bruch{1}{n}2^{n}x^{n}[/mm] und somit ist [mm]a_{n}[/mm]
> = [mm]\bruch{1}{n}2^{n}[/mm]
>  Ich setze dann ein in
> r = [mm]\limes_{n\rightarrow\infty} (\bruch{a_{n}}{a_{n+1}})[/mm]
>  
> und erhalte:
>  [mm]\limes_{n\rightarrow\infty} \bruch{2^{n}}{n}\bruch{n+1}{2^{n+1}}[/mm]
> = [mm]\limes_{n\rightarrow\infty} \bruch{n+1}{2n}[/mm]
>  Das hilft
> mir leider nicht weiter, weil soweit ich weiss ist der
> Limes von unendlich über unendlich nicht definiert...
>  Ist das sonst soweit richtig?

Passt so weit, ist aber noch nicht fertig:
[mm] $\limes_{n\rightarrow\infty} \bruch{n+1}{2n} [/mm] = [mm] \limes_{n\rightarrow\infty} \bruch{n}{2n} [/mm] + [mm] \frac{1}{2n} [/mm] = [mm] \limes_{n\rightarrow\infty} \frac{1}{2} [/mm] + [mm] \frac{1}{2n} [/mm] = [mm] \frac{1}{2}$ [/mm]

Und schwupp hast du wieder einen schönen Limes. ;)

Und zu obiger Frage, wann man welches Verfahren benutzen sollte:
Wenn du beim Quotientenkriterium nichts gescheites rauskriegst ist es immer eine gute Idee mal das Wurzelkriterium zu probieren.^^
Davon abgesehen taugt das Quotientenkriterium eher für Brüche (zB [mm] $\frac{1}{n}$, $\frac{1}{n!}$,...), [/mm] das Wurzelkriterium (da n-te Wurzel, siehe oben) eher für Potenzen (zB [mm] $2^n$). [/mm]
Welches du wählst ist dir überlassen, oftmals ist das Quotientenkriterium etwas leichter zu rechnen, aber es mag halt passieren, dass du nix brauchbares rauskriegst.
Also: Bei Brüchen Quotientenkriterum, bei Potenzen Wurzelkriterium, bei komplexeren Sachen nimm wie du lustig bist.

Bezug
                
Bezug
Konvergenzradien: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:02 Mi 10.08.2011
Autor: natascha

Super, vielen Dank für deine Antwort!

Liebe Grüsse,
Natascha

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]